by T2Cert
0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − x_0 ≤ 0 ∧ 1 − x_0 + x_post ≤ 0 ∧ −1 + x_0 − x_post ≤ 0 ∧ x_0 − x_post ≤ 0 ∧ − x_0 + x_post ≤ 0 ∧ − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 | |
1 | 1 | 0: | − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | |
2 | 2 | 0: | y_0 ≤ 0 ∧ − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | |
2 | 3 | 3: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − y_0 ≤ 0 ∧ 1 − y_0 + y_post ≤ 0 ∧ −1 + y_0 − y_post ≤ 0 ∧ y_0 − y_post ≤ 0 ∧ − y_0 + y_post ≤ 0 ∧ − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | |
3 | 4 | 2: | − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | |
4 | 5 | 2: | − x_0 + z_0 ≤ 0 ∧ − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | |
4 | 6 | 5: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 + x_0 − z_0 ≤ 0 ∧ −1 − x_0 + x_post ≤ 0 ∧ 1 + x_0 − x_post ≤ 0 ∧ x_0 − x_post ≤ 0 ∧ − x_0 + x_post ≤ 0 ∧ − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 | |
5 | 7 | 4: | − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | |
6 | 8 | 4: | y_0 − z_0 ≤ 0 ∧ − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | |
6 | 9 | 7: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − y_0 + z_0 ≤ 0 ∧ 1 − y_0 + y_post ≤ 0 ∧ −1 + y_0 − y_post ≤ 0 ∧ y_0 − y_post ≤ 0 ∧ − y_0 + y_post ≤ 0 ∧ − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | |
7 | 10 | 6: | − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | |
8 | 11 | 6: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ x_post ≤ 0 ∧ − x_post ≤ 0 ∧ x_0 − x_post ≤ 0 ∧ − x_0 + x_post ≤ 0 ∧ − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 | |
9 | 12 | 8: | − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 |
The following invariants are asserted.
0: | y_0 ≤ 0 |
1: | y_0 ≤ 0 |
2: | TRUE |
3: | TRUE |
4: | TRUE |
5: | TRUE |
6: | x_post ≤ 0 ∧ − x_post ≤ 0 ∧ x_0 ≤ 0 ∧ − x_0 ≤ 0 |
7: | x_post ≤ 0 ∧ − x_post ≤ 0 ∧ x_0 ≤ 0 ∧ − x_0 ≤ 0 |
8: | TRUE |
9: | TRUE |
The invariants are proved as follows.
0 | (0) | y_0 ≤ 0 | ||
1 | (1) | y_0 ≤ 0 | ||
2 | (2) | TRUE | ||
3 | (3) | TRUE | ||
4 | (4) | TRUE | ||
5 | (5) | TRUE | ||
6 | (6) | x_post ≤ 0 ∧ − x_post ≤ 0 ∧ x_0 ≤ 0 ∧ − x_0 ≤ 0 | ||
7 | (7) | x_post ≤ 0 ∧ − x_post ≤ 0 ∧ x_0 ≤ 0 ∧ − x_0 ≤ 0 | ||
8 | (8) | TRUE | ||
9 | (9) | TRUE |
0 | 0 1 | |
1 | 1 0 | |
2 | 2 0 | |
2 | 3 3 | |
3 | 4 2 | |
4 | 5 2 | |
4 | 6 5 | |
5 | 7 4 | |
6 | 8 4 | |
6 | 9 7 | |
7 | 10 6 | |
8 | 11 6 | |
9 | 12 8 |
0 | 13 | : | − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 |
2 | 20 | : | − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 |
4 | 27 | : | − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 |
6 | 34 | : | − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 |
We remove transitions
, , , , using the following ranking functions, which are bounded by −23.9: | 0 |
8: | 0 |
6: | 0 |
7: | 0 |
4: | 0 |
5: | 0 |
2: | 0 |
3: | 0 |
0: | 0 |
1: | 0 |
: | −7 |
: | −8 |
: | −9 |
: | −9 |
: | −9 |
: | −9 |
: | −12 |
: | −12 |
: | −12 |
: | −12 |
: | −15 |
: | −15 |
: | −15 |
: | −15 |
: | −18 |
: | −18 |
: | −18 |
: | −18 |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
16 : − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
14 : − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
23 : − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
21 : − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
30 : − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
28 : − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
37 : − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
35 : − z_0 + z_0 ≤ 0 ∧ z_0 − z_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0
We consider subproblems for each of the 4 SCC(s) of the program graph.
Here we consider the SCC {
, , , }.We remove transition
using the following ranking functions, which are bounded by 0.: | −2 + 4⋅x_0 |
: | 4⋅x_0 |
: | −3 + 4⋅x_0 |
: | −1 + 4⋅x_0 |
We remove transitions 14, using the following ranking functions, which are bounded by −3.
: | −2 |
: | 0 |
: | −3 |
: | −1 |
We remove transition 16 using the following ranking functions, which are bounded by −1.
: | −1 |
: | 0 |
: | 0 |
: | 0 |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
Here we consider the SCC {
, , , }.We remove transition
using the following ranking functions, which are bounded by 1.: | −1 + 4⋅y_0 |
: | 1 + 4⋅y_0 |
: | −2 + 4⋅y_0 |
: | 4⋅y_0 |
We remove transitions 21, 23, using the following ranking functions, which are bounded by −1.
: | 0 |
: | 2 |
: | −1 |
: | 1 |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
Here we consider the SCC {
, , , }.We remove transition
using the following ranking functions, which are bounded by 1.: | −1 − 4⋅x_0 + 4⋅z_0 |
: | 1 − 4⋅x_0 + 4⋅z_0 |
: | −2 − 4⋅x_0 + 4⋅z_0 |
: | −4⋅x_0 + 4⋅z_0 |
We remove transitions 28, 30, using the following ranking functions, which are bounded by −3.
: | −2 |
: | 0 |
: | −3 |
: | −1 |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
Here we consider the SCC {
, , , }.We remove transition
using the following ranking functions, which are bounded by 1.: | −1 + 4⋅y_0 − 4⋅z_0 |
: | 1 + 4⋅y_0 − 4⋅z_0 |
: | −2 + 4⋅y_0 − 4⋅z_0 |
: | 4⋅y_0 − 4⋅z_0 |
We remove transitions 35, 37 using the following ranking functions, which are bounded by −2.
: | −1 |
: | 1 |
: | −2 |
: | 0 |
We remove transition
using the following ranking functions, which are bounded by −1.: | 0 |
: | 0 |
: | 0 |
: | −1 |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert