# LTS Termination Proof

by T2Cert

## Input

Integer Transition System
• Initial Location: 6
• Transitions: (pre-variables and post-variables)  0 0 1: 1 − ox_0 + x_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − ox_post + ox_post ≤ 0 ∧ ox_post − ox_post ≤ 0 ∧ − ox_0 + ox_0 ≤ 0 ∧ ox_0 − ox_0 ≤ 0 ∧ − c_post + c_post ≤ 0 ∧ c_post − c_post ≤ 0 ∧ − c_0 + c_0 ≤ 0 ∧ c_0 − c_0 ≤ 0 0 1 2: ox_0 − x_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − ox_post + ox_post ≤ 0 ∧ ox_post − ox_post ≤ 0 ∧ − ox_0 + ox_0 ≤ 0 ∧ ox_0 − ox_0 ≤ 0 ∧ − c_post + c_post ≤ 0 ∧ c_post − c_post ≤ 0 ∧ − c_0 + c_0 ≤ 0 ∧ c_0 − c_0 ≤ 0 3 2 1: c_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − ox_post + ox_post ≤ 0 ∧ ox_post − ox_post ≤ 0 ∧ − ox_0 + ox_0 ≤ 0 ∧ ox_0 − ox_0 ≤ 0 ∧ − c_post + c_post ≤ 0 ∧ c_post − c_post ≤ 0 ∧ − c_0 + c_0 ≤ 0 ∧ c_0 − c_0 ≤ 0 3 3 1: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ ox_post − x_0 ≤ 0 ∧ − ox_post + x_0 ≤ 0 ∧ −1 + c_post ≤ 0 ∧ 1 − c_post ≤ 0 ∧ c_0 − c_post ≤ 0 ∧ − c_0 + c_post ≤ 0 ∧ ox_0 − ox_post ≤ 0 ∧ − ox_0 + ox_post ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 4 4 3: c_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − ox_post + ox_post ≤ 0 ∧ ox_post − ox_post ≤ 0 ∧ − ox_0 + ox_0 ≤ 0 ∧ ox_0 − ox_0 ≤ 0 ∧ − c_post + c_post ≤ 0 ∧ c_post − c_post ≤ 0 ∧ − c_0 + c_0 ≤ 0 ∧ c_0 − c_0 ≤ 0 4 5 0: 1 − c_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − ox_post + ox_post ≤ 0 ∧ ox_post − ox_post ≤ 0 ∧ − ox_0 + ox_0 ≤ 0 ∧ ox_0 − ox_0 ≤ 0 ∧ − c_post + c_post ≤ 0 ∧ c_post − c_post ≤ 0 ∧ − c_0 + c_0 ≤ 0 ∧ c_0 − c_0 ≤ 0 1 6 4: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − x_0 ≤ 0 ∧ 1 − x_0 + x_post ≤ 0 ∧ −1 + x_0 − x_post ≤ 0 ∧ x_0 − x_post ≤ 0 ∧ − x_0 + x_post ≤ 0 ∧ − ox_post + ox_post ≤ 0 ∧ ox_post − ox_post ≤ 0 ∧ − ox_0 + ox_0 ≤ 0 ∧ ox_0 − ox_0 ≤ 0 ∧ − c_post + c_post ≤ 0 ∧ c_post − c_post ≤ 0 ∧ − c_0 + c_0 ≤ 0 ∧ c_0 − c_0 ≤ 0 5 7 1: c_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − ox_post + ox_post ≤ 0 ∧ ox_post − ox_post ≤ 0 ∧ − ox_0 + ox_0 ≤ 0 ∧ ox_0 − ox_0 ≤ 0 ∧ − c_post + c_post ≤ 0 ∧ c_post − c_post ≤ 0 ∧ − c_0 + c_0 ≤ 0 ∧ c_0 − c_0 ≤ 0 6 8 5: − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − ox_post + ox_post ≤ 0 ∧ ox_post − ox_post ≤ 0 ∧ − ox_0 + ox_0 ≤ 0 ∧ ox_0 − ox_0 ≤ 0 ∧ − c_post + c_post ≤ 0 ∧ c_post − c_post ≤ 0 ∧ − c_0 + c_0 ≤ 0 ∧ c_0 − c_0 ≤ 0

## Proof

The following invariants are asserted.

 0: 1 − c_0 ≤ 0 1: TRUE 2: 1 − c_0 ≤ 0 3: c_0 ≤ 0 4: TRUE 5: TRUE 6: TRUE

The invariants are proved as follows.

### IMPACT Invariant Proof

• nodes (location) invariant:  0 (0) 1 − c_0 ≤ 0 1 (1) TRUE 2 (2) 1 − c_0 ≤ 0 3 (3) c_0 ≤ 0 4 (4) TRUE 5 (5) TRUE 6 (6) TRUE
• initial node: 6
• cover edges:
• transition edges:  0 0 1 0 1 2 1 6 4 3 2 1 3 3 1 4 4 3 4 5 0 5 7 1 6 8 5

### 2 Switch to Cooperation Termination Proof

We consider the following cutpoint-transitions:
 1 9 1: − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − ox_post + ox_post ≤ 0 ∧ ox_post − ox_post ≤ 0 ∧ − ox_0 + ox_0 ≤ 0 ∧ ox_0 − ox_0 ≤ 0 ∧ − c_post + c_post ≤ 0 ∧ c_post − c_post ≤ 0 ∧ − c_0 + c_0 ≤ 0 ∧ c_0 − c_0 ≤ 0
and for every transition t, a duplicate t is considered.

### 3 Transition Removal

We remove transitions 1, 7, 8 using the following ranking functions, which are bounded by −13.

 6: 0 5: 0 0: 0 1: 0 3: 0 4: 0 2: 0 6: −5 5: −6 0: −7 1: −7 3: −7 4: −7 1_var_snapshot: −7 1*: −7 2: −8
Hints:
 10 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 0 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 2 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 3 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 4 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 5 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 6 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 1 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 7 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 8 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

1* 12 1: x_post + x_post ≤ 0x_postx_post ≤ 0x_0 + x_0 ≤ 0x_0x_0 ≤ 0ox_post + ox_post ≤ 0ox_postox_post ≤ 0ox_0 + ox_0 ≤ 0ox_0ox_0 ≤ 0c_post + c_post ≤ 0c_postc_post ≤ 0c_0 + c_0 ≤ 0c_0c_0 ≤ 0

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

1 10 1_var_snapshot: x_post + x_post ≤ 0x_postx_post ≤ 0x_0 + x_0 ≤ 0x_0x_0 ≤ 0ox_post + ox_post ≤ 0ox_postox_post ≤ 0ox_0 + ox_0 ≤ 0ox_0ox_0 ≤ 0c_post + c_post ≤ 0c_postc_post ≤ 0c_0 + c_0 ≤ 0c_0c_0 ≤ 0

### 6 SCC Decomposition

We consider subproblems for each of the 1 SCC(s) of the program graph.

### 6.1 SCC Subproblem 1/1

Here we consider the SCC { 0, 1, 3, 4, 1_var_snapshot, 1* }.

### 6.1.1 Transition Removal

We remove transition 6 using the following ranking functions, which are bounded by 6.

 0: 3 + 7⋅x_0 1: 1 + 7⋅x_0 3: 3 + 7⋅x_0 4: 4 + 7⋅x_0 1_var_snapshot: 7⋅x_0 1*: 2 + 7⋅x_0
Hints:
 10 lexWeak[ [0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 12 lexWeak[ [0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 0 lexWeak[ [0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 2 lexWeak[ [0, 0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 3 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0] ] 4 lexWeak[ [0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 5 lexWeak[ [0, 0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 6 lexStrict[ [0, 0, 0, 7, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

### 6.1.2 Transition Removal

We remove transitions 10, 12, 0, 2, 3, 4, 5 using the following ranking functions, which are bounded by −2.

 0: 1 1: −1 3: 1 4: 2 1_var_snapshot: −2 1*: 0
Hints:
 10 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 12 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 0 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 2 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 3 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 4 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] 5 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

### 6.1.3 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

### 6.1.3.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 9.

### 6.1.3.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

T2Cert

• version: 1.0