by T2Cert
0 | 0 | 1: | 1 − ox_0 + x_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − ox_post + ox_post ≤ 0 ∧ ox_post − ox_post ≤ 0 ∧ − ox_0 + ox_0 ≤ 0 ∧ ox_0 − ox_0 ≤ 0 ∧ − c_post + c_post ≤ 0 ∧ c_post − c_post ≤ 0 ∧ − c_0 + c_0 ≤ 0 ∧ c_0 − c_0 ≤ 0 | |
0 | 1 | 2: | ox_0 − x_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − ox_post + ox_post ≤ 0 ∧ ox_post − ox_post ≤ 0 ∧ − ox_0 + ox_0 ≤ 0 ∧ ox_0 − ox_0 ≤ 0 ∧ − c_post + c_post ≤ 0 ∧ c_post − c_post ≤ 0 ∧ − c_0 + c_0 ≤ 0 ∧ c_0 − c_0 ≤ 0 | |
3 | 2 | 1: | c_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − ox_post + ox_post ≤ 0 ∧ ox_post − ox_post ≤ 0 ∧ − ox_0 + ox_0 ≤ 0 ∧ ox_0 − ox_0 ≤ 0 ∧ − c_post + c_post ≤ 0 ∧ c_post − c_post ≤ 0 ∧ − c_0 + c_0 ≤ 0 ∧ c_0 − c_0 ≤ 0 | |
3 | 3 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ ox_post − x_0 ≤ 0 ∧ − ox_post + x_0 ≤ 0 ∧ −1 + c_post ≤ 0 ∧ 1 − c_post ≤ 0 ∧ c_0 − c_post ≤ 0 ∧ − c_0 + c_post ≤ 0 ∧ ox_0 − ox_post ≤ 0 ∧ − ox_0 + ox_post ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | |
4 | 4 | 3: | c_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − ox_post + ox_post ≤ 0 ∧ ox_post − ox_post ≤ 0 ∧ − ox_0 + ox_0 ≤ 0 ∧ ox_0 − ox_0 ≤ 0 ∧ − c_post + c_post ≤ 0 ∧ c_post − c_post ≤ 0 ∧ − c_0 + c_0 ≤ 0 ∧ c_0 − c_0 ≤ 0 | |
4 | 5 | 0: | 1 − c_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − ox_post + ox_post ≤ 0 ∧ ox_post − ox_post ≤ 0 ∧ − ox_0 + ox_0 ≤ 0 ∧ ox_0 − ox_0 ≤ 0 ∧ − c_post + c_post ≤ 0 ∧ c_post − c_post ≤ 0 ∧ − c_0 + c_0 ≤ 0 ∧ c_0 − c_0 ≤ 0 | |
5 | 6 | 4: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − y_0 + y_post ≤ 0 ∧ −1 + y_0 − y_post ≤ 0 ∧ y_0 − y_post ≤ 0 ∧ − y_0 + y_post ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − ox_post + ox_post ≤ 0 ∧ ox_post − ox_post ≤ 0 ∧ − ox_0 + ox_0 ≤ 0 ∧ ox_0 − ox_0 ≤ 0 ∧ − c_post + c_post ≤ 0 ∧ c_post − c_post ≤ 0 ∧ − c_0 + c_0 ≤ 0 ∧ c_0 − c_0 ≤ 0 | |
5 | 7 | 4: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − x_0 + x_post ≤ 0 ∧ −1 + x_0 − x_post ≤ 0 ∧ x_0 − x_post ≤ 0 ∧ − x_0 + x_post ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − ox_post + ox_post ≤ 0 ∧ ox_post − ox_post ≤ 0 ∧ − ox_0 + ox_0 ≤ 0 ∧ ox_0 − ox_0 ≤ 0 ∧ − c_post + c_post ≤ 0 ∧ c_post − c_post ≤ 0 ∧ − c_0 + c_0 ≤ 0 ∧ c_0 − c_0 ≤ 0 | |
1 | 8 | 5: | 1 − x_0 ≤ 0 ∧ 1 − y_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − ox_post + ox_post ≤ 0 ∧ ox_post − ox_post ≤ 0 ∧ − ox_0 + ox_0 ≤ 0 ∧ ox_0 − ox_0 ≤ 0 ∧ − c_post + c_post ≤ 0 ∧ c_post − c_post ≤ 0 ∧ − c_0 + c_0 ≤ 0 ∧ c_0 − c_0 ≤ 0 | |
6 | 9 | 1: | c_0 ≤ 0 ∧ − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − ox_post + ox_post ≤ 0 ∧ ox_post − ox_post ≤ 0 ∧ − ox_0 + ox_0 ≤ 0 ∧ ox_0 − ox_0 ≤ 0 ∧ − c_post + c_post ≤ 0 ∧ c_post − c_post ≤ 0 ∧ − c_0 + c_0 ≤ 0 ∧ c_0 − c_0 ≤ 0 | |
7 | 10 | 6: | − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − ox_post + ox_post ≤ 0 ∧ ox_post − ox_post ≤ 0 ∧ − ox_0 + ox_0 ≤ 0 ∧ ox_0 − ox_0 ≤ 0 ∧ − c_post + c_post ≤ 0 ∧ c_post − c_post ≤ 0 ∧ − c_0 + c_0 ≤ 0 ∧ c_0 − c_0 ≤ 0 |
The following invariants are asserted.
0: | 1 − c_0 ≤ 0 |
1: | TRUE |
2: | 1 − c_0 ≤ 0 |
3: | c_0 ≤ 0 |
4: | TRUE |
5: | 1 − x_0 ≤ 0 ∧ 1 − y_0 ≤ 0 |
6: | TRUE |
7: | TRUE |
The invariants are proved as follows.
0 | (0) | 1 − c_0 ≤ 0 | ||
1 | (1) | TRUE | ||
2 | (2) | 1 − c_0 ≤ 0 | ||
3 | (3) | c_0 ≤ 0 | ||
4 | (4) | TRUE | ||
5 | (5) | 1 − x_0 ≤ 0 ∧ 1 − y_0 ≤ 0 | ||
6 | (6) | TRUE | ||
7 | (7) | TRUE |
0 | 0 1 | |
0 | 1 2 | |
1 | 8 5 | |
3 | 2 1 | |
3 | 3 1 | |
4 | 4 3 | |
4 | 5 0 | |
5 | 6 4 | |
5 | 7 4 | |
6 | 9 1 | |
7 | 10 6 |
1 | 11 | : | − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − ox_post + ox_post ≤ 0 ∧ ox_post − ox_post ≤ 0 ∧ − ox_0 + ox_0 ≤ 0 ∧ ox_0 − ox_0 ≤ 0 ∧ − c_post + c_post ≤ 0 ∧ c_post − c_post ≤ 0 ∧ − c_0 + c_0 ≤ 0 ∧ c_0 − c_0 ≤ 0 |
We remove transitions
, , using the following ranking functions, which are bounded by −13.7: | 0 |
6: | 0 |
0: | 0 |
1: | 0 |
3: | 0 |
4: | 0 |
5: | 0 |
2: | 0 |
: | −5 |
: | −6 |
: | −7 |
: | −7 |
: | −7 |
: | −7 |
: | −7 |
: | −7 |
: | −7 |
: | −8 |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
14 : − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − ox_post + ox_post ≤ 0 ∧ ox_post − ox_post ≤ 0 ∧ − ox_0 + ox_0 ≤ 0 ∧ ox_0 − ox_0 ≤ 0 ∧ − c_post + c_post ≤ 0 ∧ c_post − c_post ≤ 0 ∧ − c_0 + c_0 ≤ 0 ∧ c_0 − c_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
12 : − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_post + x_post ≤ 0 ∧ x_post − x_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 ∧ − ox_post + ox_post ≤ 0 ∧ ox_post − ox_post ≤ 0 ∧ − ox_0 + ox_0 ≤ 0 ∧ ox_0 − ox_0 ≤ 0 ∧ − c_post + c_post ≤ 0 ∧ c_post − c_post ≤ 0 ∧ − c_0 + c_0 ≤ 0 ∧ c_0 − c_0 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC {
, , , , , , }.We remove transitions
, , using the following ranking functions, which are bounded by 9.: | −1 + 9⋅x_0 + 8⋅y_0 |
: | −3 + 9⋅x_0 + 8⋅y_0 |
: | −1 + 9⋅x_0 + 8⋅y_0 |
: | 9⋅x_0 + 8⋅y_0 |
: | −7 + 9⋅x_0 + 8⋅y_0 |
: | −3 + 9⋅x_0 + 8⋅y_0 |
: | −2 + 9⋅x_0 + 8⋅y_0 |
We remove transitions 12, 14, , , , , using the following ranking functions, which are bounded by −2.
: | 1 |
: | −1 |
: | 1 |
: | 2 |
: | 0 |
: | −2 |
: | 0 |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert