by T2Cert
0 | 0 | 1: | 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − x_0 ≤ 0 ∧ − x_0 + y_1 ≤ 0 ∧ x_0 − y_1 ≤ 0 ∧ y_1 ≤ 0 ∧ −1 − y_1 + y_post ≤ 0 ∧ 1 + y_1 − y_post ≤ 0 ∧ y_0 − y_post ≤ 0 ∧ − y_0 + y_post ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | |
1 | 1 | 0: | − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_1 + y_1 ≤ 0 ∧ y_1 − y_1 ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | |
2 | 2 | 0: | − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_1 + y_1 ≤ 0 ∧ y_1 − y_1 ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 | |
3 | 3 | 2: | − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_1 + y_1 ≤ 0 ∧ y_1 − y_1 ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 |
The following invariants are asserted.
0: | TRUE |
1: | y_1 ≤ 0 ∧ 1 − x_0 ≤ 0 |
2: | TRUE |
3: | TRUE |
The invariants are proved as follows.
0 | (0) | TRUE | ||
1 | (1) | y_1 ≤ 0 ∧ 1 − x_0 ≤ 0 | ||
2 | (2) | TRUE | ||
3 | (3) | TRUE |
0 | 0 1 | |
1 | 1 0 | |
2 | 2 0 | |
3 | 3 2 |
0 | 4 | : | − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_1 + y_1 ≤ 0 ∧ y_1 − y_1 ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0 |
We remove transitions
, using the following ranking functions, which are bounded by −11.3: | 0 |
2: | 0 |
0: | 0 |
1: | 0 |
: | −4 |
: | −5 |
: | −6 |
: | −6 |
: | −6 |
: | −6 |
5 | lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0] ] |
lexWeak[ [0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0] ] |
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
7 : − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_1 + y_1 ≤ 0 ∧ y_1 − y_1 ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0
The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.
5 : − y_post + y_post ≤ 0 ∧ y_post − y_post ≤ 0 ∧ − y_1 + y_1 ≤ 0 ∧ y_1 − y_1 ≤ 0 ∧ − y_0 + y_0 ≤ 0 ∧ y_0 − y_0 ≤ 0 ∧ − x_0 + x_0 ≤ 0 ∧ x_0 − x_0 ≤ 0
We consider subproblems for each of the 1 SCC(s) of the program graph.
Here we consider the SCC {
, , , }.We remove transitions 5, 7, using the following ranking functions, which are bounded by −2.
: | 0 |
: | 2⋅x_0 |
: | −1 |
: | 1 |
5 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0] ] |
7 | lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0] ] |
lexStrict[ [0, 0, 0, 0, 2, 0, 4, 4, 0, 0, 0, 0, 2, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] | |
lexWeak[ [0, 2, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We remove transition
using the following ranking functions, which are bounded by −1.: | 0 |
: | 0 |
: | 0 |
: | −1 |
lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ] |
We consider 1 subproblems corresponding to sets of cut-point transitions as follows.
There remain no cut-point transition to consider. Hence the cooperation termination is trivial.
T2Cert