LTS Termination Proof

by T2Cert

Input

Integer Transition System

Proof

1 Invariant Updates

The following invariants are asserted.

0: −10 + nDim_post ≤ 010 − nDim_post ≤ 010 − nDim_0 ≤ 0−1 + tmp___4_post ≤ 0−1 + tmp___4_0 ≤ 0
1: −10 + nDim_post ≤ 010 − nDim_post ≤ 010 − nDim_0 ≤ 0−1 + tmp___4_post ≤ 0−1 + tmp___4_0 ≤ 0
2: −10 + nDim_post ≤ 010 − nDim_post ≤ 010 − nDim_0 ≤ 0
3: −10 + nDim_post ≤ 010 − nDim_post ≤ 010 − nDim_0 ≤ 0
4: −10 + nDim_post ≤ 010 − nDim_post ≤ 010 − nDim_0 ≤ 0
5: −10 + nDim_post ≤ 010 − nDim_post ≤ 010 − nDim_0 ≤ 0tmp___3_post ≤ 0tmp___3_0 ≤ 0
6: −10 + nDim_post ≤ 010 − nDim_post ≤ 010 − nDim_0 ≤ 0
7: −10 + nDim_post ≤ 010 − nDim_post ≤ 010 − nDim_0 ≤ 0
8: −10 + nDim_post ≤ 010 − nDim_post ≤ 010 − nDim_0 ≤ 0
9: −10 + nDim_post ≤ 010 − nDim_post ≤ 010 − nDim_0 ≤ 0
10: −1 + bDomain_post ≤ 01 − bDomain_post ≤ 0−1 + bSorted_post ≤ 01 − bSorted_post ≤ 0−10 + nDim_post ≤ 010 − nDim_post ≤ 0−1 + bDomain_0 ≤ 01 − bDomain_0 ≤ 0−1 + bSorted_0 ≤ 01 − bSorted_0 ≤ 0−10 + nDim_0 ≤ 010 − nDim_0 ≤ 0
11: −1 + bDomain_post ≤ 01 − bDomain_post ≤ 0−1 + bSorted_post ≤ 01 − bSorted_post ≤ 0−10 + nDim_post ≤ 010 − nDim_post ≤ 0−1 + bDomain_0 ≤ 01 − bDomain_0 ≤ 0−1 + bSorted_0 ≤ 01 − bSorted_0 ≤ 0−10 + nDim_0 ≤ 010 − nDim_0 ≤ 0
12: −1 + bSorted_post ≤ 01 − bSorted_post ≤ 0−10 + nDim_post ≤ 010 − nDim_post ≤ 0−1 + bSorted_0 ≤ 01 − bSorted_0 ≤ 010 − nDim_0 ≤ 0tmp___2_post ≤ 0tmp___2_0 ≤ 0
13: −1 + bSorted_post ≤ 01 − bSorted_post ≤ 0−10 + nDim_post ≤ 010 − nDim_post ≤ 0−1 + bSorted_0 ≤ 01 − bSorted_0 ≤ 010 − nDim_0 ≤ 0
14: −1 + bSorted_post ≤ 01 − bSorted_post ≤ 0−10 + nDim_post ≤ 010 − nDim_post ≤ 0−1 + bSorted_0 ≤ 01 − bSorted_0 ≤ 010 − nDim_0 ≤ 0
15: −1 + bSorted_post ≤ 01 − bSorted_post ≤ 0−10 + nDim_post ≤ 010 − nDim_post ≤ 0−1 + bSorted_0 ≤ 01 − bSorted_0 ≤ 010 − nDim_0 ≤ 0
16: −1 + bSorted_post ≤ 01 − bSorted_post ≤ 0−10 + nDim_post ≤ 010 − nDim_post ≤ 0−1 + bSorted_0 ≤ 01 − bSorted_0 ≤ 010 − nDim_0 ≤ 0
17: −1 + bSorted_post ≤ 01 − bSorted_post ≤ 0−10 + nDim_post ≤ 010 − nDim_post ≤ 0−1 + bSorted_0 ≤ 01 − bSorted_0 ≤ 010 − nDim_0 ≤ 0bExists_0 ≤ 0bExists_0 ≤ 0
18: −1 + bSorted_post ≤ 01 − bSorted_post ≤ 0−10 + nDim_post ≤ 010 − nDim_post ≤ 0−1 + bSorted_0 ≤ 01 − bSorted_0 ≤ 010 − nDim_0 ≤ 0−1 + tmp___1_post ≤ 0−1 + tmp___1_0 ≤ 0
19: −1 + bSorted_post ≤ 01 − bSorted_post ≤ 0−10 + nDim_post ≤ 010 − nDim_post ≤ 0−1 + bSorted_0 ≤ 01 − bSorted_0 ≤ 010 − nDim_0 ≤ 0
20: −1 + bSorted_post ≤ 01 − bSorted_post ≤ 0−10 + nDim_post ≤ 010 − nDim_post ≤ 0−1 + bSorted_0 ≤ 01 − bSorted_0 ≤ 010 − nDim_0 ≤ 0bExists_0 ≤ 0bExists_0 ≤ 0
21: −1 + bSorted_post ≤ 01 − bSorted_post ≤ 0−10 + nDim_post ≤ 010 − nDim_post ≤ 0−1 + bSorted_0 ≤ 01 − bSorted_0 ≤ 010 − nDim_0 ≤ 0
22: −1 + bSorted_post ≤ 01 − bSorted_post ≤ 0−10 + nDim_post ≤ 010 − nDim_post ≤ 0−1 + bSorted_0 ≤ 01 − bSorted_0 ≤ 010 − nDim_0 ≤ 0
23: −1 + bSorted_post ≤ 01 − bSorted_post ≤ 0−10 + nDim_post ≤ 010 − nDim_post ≤ 0−1 + bSorted_0 ≤ 01 − bSorted_0 ≤ 010 − nDim_0 ≤ 0
24: −1 + bSorted_post ≤ 01 − bSorted_post ≤ 0−10 + nDim_post ≤ 010 − nDim_post ≤ 0−1 + bSorted_0 ≤ 01 − bSorted_0 ≤ 010 − nDim_0 ≤ 0
25: TRUE
26: TRUE

The invariants are proved as follows.

IMPACT Invariant Proof

2 Switch to Cooperation Termination Proof

We consider the following cutpoint-transitions:
6 45 6: tmp_post + tmp_post ≤ 0tmp_posttmp_post ≤ 0tmp___4_post + tmp___4_post ≤ 0tmp___4_posttmp___4_post ≤ 0tmp___4_0 + tmp___4_0 ≤ 0tmp___4_0tmp___4_0 ≤ 0tmp___3_post + tmp___3_post ≤ 0tmp___3_posttmp___3_post ≤ 0tmp___3_0 + tmp___3_0 ≤ 0tmp___3_0tmp___3_0 ≤ 0tmp___2_post + tmp___2_post ≤ 0tmp___2_posttmp___2_post ≤ 0tmp___2_0 + tmp___2_0 ≤ 0tmp___2_0tmp___2_0 ≤ 0tmp___1_post + tmp___1_post ≤ 0tmp___1_posttmp___1_post ≤ 0tmp___1_0 + tmp___1_0 ≤ 0tmp___1_0tmp___1_0 ≤ 0tmp___0_post + tmp___0_post ≤ 0tmp___0_posttmp___0_post ≤ 0tmp___0_0 + tmp___0_0 ≤ 0tmp___0_0tmp___0_0 ≤ 0tmp_0 + tmp_0 ≤ 0tmp_0tmp_0 ≤ 0nj_post + nj_post ≤ 0nj_postnj_post ≤ 0nj_0 + nj_0 ≤ 0nj_0nj_0 ≤ 0ni_post + ni_post ≤ 0ni_postni_post ≤ 0ni_0 + ni_0 ≤ 0ni_0ni_0 ≤ 0nDim_post + nDim_post ≤ 0nDim_postnDim_post ≤ 0nDim_0 + nDim_0 ≤ 0nDim_0nDim_0 ≤ 0bSorted_post + bSorted_post ≤ 0bSorted_postbSorted_post ≤ 0bSorted_0 + bSorted_0 ≤ 0bSorted_0bSorted_0 ≤ 0bExists_post + bExists_post ≤ 0bExists_postbExists_post ≤ 0bExists_0 + bExists_0 ≤ 0bExists_0bExists_0 ≤ 0bDomain_post + bDomain_post ≤ 0bDomain_postbDomain_post ≤ 0bDomain_0 + bDomain_0 ≤ 0bDomain_0bDomain_0 ≤ 0
10 52 10: tmp_post + tmp_post ≤ 0tmp_posttmp_post ≤ 0tmp___4_post + tmp___4_post ≤ 0tmp___4_posttmp___4_post ≤ 0tmp___4_0 + tmp___4_0 ≤ 0tmp___4_0tmp___4_0 ≤ 0tmp___3_post + tmp___3_post ≤ 0tmp___3_posttmp___3_post ≤ 0tmp___3_0 + tmp___3_0 ≤ 0tmp___3_0tmp___3_0 ≤ 0tmp___2_post + tmp___2_post ≤ 0tmp___2_posttmp___2_post ≤ 0tmp___2_0 + tmp___2_0 ≤ 0tmp___2_0tmp___2_0 ≤ 0tmp___1_post + tmp___1_post ≤ 0tmp___1_posttmp___1_post ≤ 0tmp___1_0 + tmp___1_0 ≤ 0tmp___1_0tmp___1_0 ≤ 0tmp___0_post + tmp___0_post ≤ 0tmp___0_posttmp___0_post ≤ 0tmp___0_0 + tmp___0_0 ≤ 0tmp___0_0tmp___0_0 ≤ 0tmp_0 + tmp_0 ≤ 0tmp_0tmp_0 ≤ 0nj_post + nj_post ≤ 0nj_postnj_post ≤ 0nj_0 + nj_0 ≤ 0nj_0nj_0 ≤ 0ni_post + ni_post ≤ 0ni_postni_post ≤ 0ni_0 + ni_0 ≤ 0ni_0ni_0 ≤ 0nDim_post + nDim_post ≤ 0nDim_postnDim_post ≤ 0nDim_0 + nDim_0 ≤ 0nDim_0nDim_0 ≤ 0bSorted_post + bSorted_post ≤ 0bSorted_postbSorted_post ≤ 0bSorted_0 + bSorted_0 ≤ 0bSorted_0bSorted_0 ≤ 0bExists_post + bExists_post ≤ 0bExists_postbExists_post ≤ 0bExists_0 + bExists_0 ≤ 0bExists_0bExists_0 ≤ 0bDomain_post + bDomain_post ≤ 0bDomain_postbDomain_post ≤ 0bDomain_0 + bDomain_0 ≤ 0bDomain_0bDomain_0 ≤ 0
13 59 13: tmp_post + tmp_post ≤ 0tmp_posttmp_post ≤ 0tmp___4_post + tmp___4_post ≤ 0tmp___4_posttmp___4_post ≤ 0tmp___4_0 + tmp___4_0 ≤ 0tmp___4_0tmp___4_0 ≤ 0tmp___3_post + tmp___3_post ≤ 0tmp___3_posttmp___3_post ≤ 0tmp___3_0 + tmp___3_0 ≤ 0tmp___3_0tmp___3_0 ≤ 0tmp___2_post + tmp___2_post ≤ 0tmp___2_posttmp___2_post ≤ 0tmp___2_0 + tmp___2_0 ≤ 0tmp___2_0tmp___2_0 ≤ 0tmp___1_post + tmp___1_post ≤ 0tmp___1_posttmp___1_post ≤ 0tmp___1_0 + tmp___1_0 ≤ 0tmp___1_0tmp___1_0 ≤ 0tmp___0_post + tmp___0_post ≤ 0tmp___0_posttmp___0_post ≤ 0tmp___0_0 + tmp___0_0 ≤ 0tmp___0_0tmp___0_0 ≤ 0tmp_0 + tmp_0 ≤ 0tmp_0tmp_0 ≤ 0nj_post + nj_post ≤ 0nj_postnj_post ≤ 0nj_0 + nj_0 ≤ 0nj_0nj_0 ≤ 0ni_post + ni_post ≤ 0ni_postni_post ≤ 0ni_0 + ni_0 ≤ 0ni_0ni_0 ≤ 0nDim_post + nDim_post ≤ 0nDim_postnDim_post ≤ 0nDim_0 + nDim_0 ≤ 0nDim_0nDim_0 ≤ 0bSorted_post + bSorted_post ≤ 0bSorted_postbSorted_post ≤ 0bSorted_0 + bSorted_0 ≤ 0bSorted_0bSorted_0 ≤ 0bExists_post + bExists_post ≤ 0bExists_postbExists_post ≤ 0bExists_0 + bExists_0 ≤ 0bExists_0bExists_0 ≤ 0bDomain_post + bDomain_post ≤ 0bDomain_postbDomain_post ≤ 0bDomain_0 + bDomain_0 ≤ 0bDomain_0bDomain_0 ≤ 0
21 66 21: tmp_post + tmp_post ≤ 0tmp_posttmp_post ≤ 0tmp___4_post + tmp___4_post ≤ 0tmp___4_posttmp___4_post ≤ 0tmp___4_0 + tmp___4_0 ≤ 0tmp___4_0tmp___4_0 ≤ 0tmp___3_post + tmp___3_post ≤ 0tmp___3_posttmp___3_post ≤ 0tmp___3_0 + tmp___3_0 ≤ 0tmp___3_0tmp___3_0 ≤ 0tmp___2_post + tmp___2_post ≤ 0tmp___2_posttmp___2_post ≤ 0tmp___2_0 + tmp___2_0 ≤ 0tmp___2_0tmp___2_0 ≤ 0tmp___1_post + tmp___1_post ≤ 0tmp___1_posttmp___1_post ≤ 0tmp___1_0 + tmp___1_0 ≤ 0tmp___1_0tmp___1_0 ≤ 0tmp___0_post + tmp___0_post ≤ 0tmp___0_posttmp___0_post ≤ 0tmp___0_0 + tmp___0_0 ≤ 0tmp___0_0tmp___0_0 ≤ 0tmp_0 + tmp_0 ≤ 0tmp_0tmp_0 ≤ 0nj_post + nj_post ≤ 0nj_postnj_post ≤ 0nj_0 + nj_0 ≤ 0nj_0nj_0 ≤ 0ni_post + ni_post ≤ 0ni_postni_post ≤ 0ni_0 + ni_0 ≤ 0ni_0ni_0 ≤ 0nDim_post + nDim_post ≤ 0nDim_postnDim_post ≤ 0nDim_0 + nDim_0 ≤ 0nDim_0nDim_0 ≤ 0bSorted_post + bSorted_post ≤ 0bSorted_postbSorted_post ≤ 0bSorted_0 + bSorted_0 ≤ 0bSorted_0bSorted_0 ≤ 0bExists_post + bExists_post ≤ 0bExists_postbExists_post ≤ 0bExists_0 + bExists_0 ≤ 0bExists_0bExists_0 ≤ 0bDomain_post + bDomain_post ≤ 0bDomain_postbDomain_post ≤ 0bDomain_0 + bDomain_0 ≤ 0bDomain_0bDomain_0 ≤ 0
and for every transition t, a duplicate t is considered.

3 Transition Removal

We remove transitions 0, 1, 2, 3, 4, 5, 6, 7, 14, 38, 40, 43, 44 using the following ranking functions, which are bounded by −31.

26: 0
25: 0
10: 0
11: 0
12: 0
13: 0
14: 0
15: 0
16: 0
17: 0
18: 0
19: 0
20: 0
21: 0
22: 0
23: 0
24: 0
5: 0
6: 0
7: 0
8: 0
9: 0
4: 0
3: 0
2: 0
0: 0
1: 0
26: −11
25: −12
10: −13
11: −13
10_var_snapshot: −13
10*: −13
12: −14
13: −14
14: −14
15: −14
16: −14
17: −14
18: −14
19: −14
20: −14
21: −14
22: −14
23: −14
24: −14
13_var_snapshot: −14
13*: −14
21_var_snapshot: −14
21*: −14
5: −17
6: −17
7: −17
8: −17
9: −17
6_var_snapshot: −17
6*: −17
4: −18
3: −19
2: −20
0: −21
1: −22
Hints:
46 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
53 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
60 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
67 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
8 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
9 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
10 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
11 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
12 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
13 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
15 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
16 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
17 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
18 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
19 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
20 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
21 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
22 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
23 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
24 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
25 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
26 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
27 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
28 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
29 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
30 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
31 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
32 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
33 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
34 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
35 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
36 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
37 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
39 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
41 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
42 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
0 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
1 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
2 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
3 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
4 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
5 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
6 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
7 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
14 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
38 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
40 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
43 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
44 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

4 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

6* 48 6: tmp_post + tmp_post ≤ 0tmp_posttmp_post ≤ 0tmp___4_post + tmp___4_post ≤ 0tmp___4_posttmp___4_post ≤ 0tmp___4_0 + tmp___4_0 ≤ 0tmp___4_0tmp___4_0 ≤ 0tmp___3_post + tmp___3_post ≤ 0tmp___3_posttmp___3_post ≤ 0tmp___3_0 + tmp___3_0 ≤ 0tmp___3_0tmp___3_0 ≤ 0tmp___2_post + tmp___2_post ≤ 0tmp___2_posttmp___2_post ≤ 0tmp___2_0 + tmp___2_0 ≤ 0tmp___2_0tmp___2_0 ≤ 0tmp___1_post + tmp___1_post ≤ 0tmp___1_posttmp___1_post ≤ 0tmp___1_0 + tmp___1_0 ≤ 0tmp___1_0tmp___1_0 ≤ 0tmp___0_post + tmp___0_post ≤ 0tmp___0_posttmp___0_post ≤ 0tmp___0_0 + tmp___0_0 ≤ 0tmp___0_0tmp___0_0 ≤ 0tmp_0 + tmp_0 ≤ 0tmp_0tmp_0 ≤ 0nj_post + nj_post ≤ 0nj_postnj_post ≤ 0nj_0 + nj_0 ≤ 0nj_0nj_0 ≤ 0ni_post + ni_post ≤ 0ni_postni_post ≤ 0ni_0 + ni_0 ≤ 0ni_0ni_0 ≤ 0nDim_post + nDim_post ≤ 0nDim_postnDim_post ≤ 0nDim_0 + nDim_0 ≤ 0nDim_0nDim_0 ≤ 0bSorted_post + bSorted_post ≤ 0bSorted_postbSorted_post ≤ 0bSorted_0 + bSorted_0 ≤ 0bSorted_0bSorted_0 ≤ 0bExists_post + bExists_post ≤ 0bExists_postbExists_post ≤ 0bExists_0 + bExists_0 ≤ 0bExists_0bExists_0 ≤ 0bDomain_post + bDomain_post ≤ 0bDomain_postbDomain_post ≤ 0bDomain_0 + bDomain_0 ≤ 0bDomain_0bDomain_0 ≤ 0

5 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

6 46 6_var_snapshot: tmp_post + tmp_post ≤ 0tmp_posttmp_post ≤ 0tmp___4_post + tmp___4_post ≤ 0tmp___4_posttmp___4_post ≤ 0tmp___4_0 + tmp___4_0 ≤ 0tmp___4_0tmp___4_0 ≤ 0tmp___3_post + tmp___3_post ≤ 0tmp___3_posttmp___3_post ≤ 0tmp___3_0 + tmp___3_0 ≤ 0tmp___3_0tmp___3_0 ≤ 0tmp___2_post + tmp___2_post ≤ 0tmp___2_posttmp___2_post ≤ 0tmp___2_0 + tmp___2_0 ≤ 0tmp___2_0tmp___2_0 ≤ 0tmp___1_post + tmp___1_post ≤ 0tmp___1_posttmp___1_post ≤ 0tmp___1_0 + tmp___1_0 ≤ 0tmp___1_0tmp___1_0 ≤ 0tmp___0_post + tmp___0_post ≤ 0tmp___0_posttmp___0_post ≤ 0tmp___0_0 + tmp___0_0 ≤ 0tmp___0_0tmp___0_0 ≤ 0tmp_0 + tmp_0 ≤ 0tmp_0tmp_0 ≤ 0nj_post + nj_post ≤ 0nj_postnj_post ≤ 0nj_0 + nj_0 ≤ 0nj_0nj_0 ≤ 0ni_post + ni_post ≤ 0ni_postni_post ≤ 0ni_0 + ni_0 ≤ 0ni_0ni_0 ≤ 0nDim_post + nDim_post ≤ 0nDim_postnDim_post ≤ 0nDim_0 + nDim_0 ≤ 0nDim_0nDim_0 ≤ 0bSorted_post + bSorted_post ≤ 0bSorted_postbSorted_post ≤ 0bSorted_0 + bSorted_0 ≤ 0bSorted_0bSorted_0 ≤ 0bExists_post + bExists_post ≤ 0bExists_postbExists_post ≤ 0bExists_0 + bExists_0 ≤ 0bExists_0bExists_0 ≤ 0bDomain_post + bDomain_post ≤ 0bDomain_postbDomain_post ≤ 0bDomain_0 + bDomain_0 ≤ 0bDomain_0bDomain_0 ≤ 0

6 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

10* 55 10: tmp_post + tmp_post ≤ 0tmp_posttmp_post ≤ 0tmp___4_post + tmp___4_post ≤ 0tmp___4_posttmp___4_post ≤ 0tmp___4_0 + tmp___4_0 ≤ 0tmp___4_0tmp___4_0 ≤ 0tmp___3_post + tmp___3_post ≤ 0tmp___3_posttmp___3_post ≤ 0tmp___3_0 + tmp___3_0 ≤ 0tmp___3_0tmp___3_0 ≤ 0tmp___2_post + tmp___2_post ≤ 0tmp___2_posttmp___2_post ≤ 0tmp___2_0 + tmp___2_0 ≤ 0tmp___2_0tmp___2_0 ≤ 0tmp___1_post + tmp___1_post ≤ 0tmp___1_posttmp___1_post ≤ 0tmp___1_0 + tmp___1_0 ≤ 0tmp___1_0tmp___1_0 ≤ 0tmp___0_post + tmp___0_post ≤ 0tmp___0_posttmp___0_post ≤ 0tmp___0_0 + tmp___0_0 ≤ 0tmp___0_0tmp___0_0 ≤ 0tmp_0 + tmp_0 ≤ 0tmp_0tmp_0 ≤ 0nj_post + nj_post ≤ 0nj_postnj_post ≤ 0nj_0 + nj_0 ≤ 0nj_0nj_0 ≤ 0ni_post + ni_post ≤ 0ni_postni_post ≤ 0ni_0 + ni_0 ≤ 0ni_0ni_0 ≤ 0nDim_post + nDim_post ≤ 0nDim_postnDim_post ≤ 0nDim_0 + nDim_0 ≤ 0nDim_0nDim_0 ≤ 0bSorted_post + bSorted_post ≤ 0bSorted_postbSorted_post ≤ 0bSorted_0 + bSorted_0 ≤ 0bSorted_0bSorted_0 ≤ 0bExists_post + bExists_post ≤ 0bExists_postbExists_post ≤ 0bExists_0 + bExists_0 ≤ 0bExists_0bExists_0 ≤ 0bDomain_post + bDomain_post ≤ 0bDomain_postbDomain_post ≤ 0bDomain_0 + bDomain_0 ≤ 0bDomain_0bDomain_0 ≤ 0

7 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

10 53 10_var_snapshot: tmp_post + tmp_post ≤ 0tmp_posttmp_post ≤ 0tmp___4_post + tmp___4_post ≤ 0tmp___4_posttmp___4_post ≤ 0tmp___4_0 + tmp___4_0 ≤ 0tmp___4_0tmp___4_0 ≤ 0tmp___3_post + tmp___3_post ≤ 0tmp___3_posttmp___3_post ≤ 0tmp___3_0 + tmp___3_0 ≤ 0tmp___3_0tmp___3_0 ≤ 0tmp___2_post + tmp___2_post ≤ 0tmp___2_posttmp___2_post ≤ 0tmp___2_0 + tmp___2_0 ≤ 0tmp___2_0tmp___2_0 ≤ 0tmp___1_post + tmp___1_post ≤ 0tmp___1_posttmp___1_post ≤ 0tmp___1_0 + tmp___1_0 ≤ 0tmp___1_0tmp___1_0 ≤ 0tmp___0_post + tmp___0_post ≤ 0tmp___0_posttmp___0_post ≤ 0tmp___0_0 + tmp___0_0 ≤ 0tmp___0_0tmp___0_0 ≤ 0tmp_0 + tmp_0 ≤ 0tmp_0tmp_0 ≤ 0nj_post + nj_post ≤ 0nj_postnj_post ≤ 0nj_0 + nj_0 ≤ 0nj_0nj_0 ≤ 0ni_post + ni_post ≤ 0ni_postni_post ≤ 0ni_0 + ni_0 ≤ 0ni_0ni_0 ≤ 0nDim_post + nDim_post ≤ 0nDim_postnDim_post ≤ 0nDim_0 + nDim_0 ≤ 0nDim_0nDim_0 ≤ 0bSorted_post + bSorted_post ≤ 0bSorted_postbSorted_post ≤ 0bSorted_0 + bSorted_0 ≤ 0bSorted_0bSorted_0 ≤ 0bExists_post + bExists_post ≤ 0bExists_postbExists_post ≤ 0bExists_0 + bExists_0 ≤ 0bExists_0bExists_0 ≤ 0bDomain_post + bDomain_post ≤ 0bDomain_postbDomain_post ≤ 0bDomain_0 + bDomain_0 ≤ 0bDomain_0bDomain_0 ≤ 0

8 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

13* 62 13: tmp_post + tmp_post ≤ 0tmp_posttmp_post ≤ 0tmp___4_post + tmp___4_post ≤ 0tmp___4_posttmp___4_post ≤ 0tmp___4_0 + tmp___4_0 ≤ 0tmp___4_0tmp___4_0 ≤ 0tmp___3_post + tmp___3_post ≤ 0tmp___3_posttmp___3_post ≤ 0tmp___3_0 + tmp___3_0 ≤ 0tmp___3_0tmp___3_0 ≤ 0tmp___2_post + tmp___2_post ≤ 0tmp___2_posttmp___2_post ≤ 0tmp___2_0 + tmp___2_0 ≤ 0tmp___2_0tmp___2_0 ≤ 0tmp___1_post + tmp___1_post ≤ 0tmp___1_posttmp___1_post ≤ 0tmp___1_0 + tmp___1_0 ≤ 0tmp___1_0tmp___1_0 ≤ 0tmp___0_post + tmp___0_post ≤ 0tmp___0_posttmp___0_post ≤ 0tmp___0_0 + tmp___0_0 ≤ 0tmp___0_0tmp___0_0 ≤ 0tmp_0 + tmp_0 ≤ 0tmp_0tmp_0 ≤ 0nj_post + nj_post ≤ 0nj_postnj_post ≤ 0nj_0 + nj_0 ≤ 0nj_0nj_0 ≤ 0ni_post + ni_post ≤ 0ni_postni_post ≤ 0ni_0 + ni_0 ≤ 0ni_0ni_0 ≤ 0nDim_post + nDim_post ≤ 0nDim_postnDim_post ≤ 0nDim_0 + nDim_0 ≤ 0nDim_0nDim_0 ≤ 0bSorted_post + bSorted_post ≤ 0bSorted_postbSorted_post ≤ 0bSorted_0 + bSorted_0 ≤ 0bSorted_0bSorted_0 ≤ 0bExists_post + bExists_post ≤ 0bExists_postbExists_post ≤ 0bExists_0 + bExists_0 ≤ 0bExists_0bExists_0 ≤ 0bDomain_post + bDomain_post ≤ 0bDomain_postbDomain_post ≤ 0bDomain_0 + bDomain_0 ≤ 0bDomain_0bDomain_0 ≤ 0

9 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

13 60 13_var_snapshot: tmp_post + tmp_post ≤ 0tmp_posttmp_post ≤ 0tmp___4_post + tmp___4_post ≤ 0tmp___4_posttmp___4_post ≤ 0tmp___4_0 + tmp___4_0 ≤ 0tmp___4_0tmp___4_0 ≤ 0tmp___3_post + tmp___3_post ≤ 0tmp___3_posttmp___3_post ≤ 0tmp___3_0 + tmp___3_0 ≤ 0tmp___3_0tmp___3_0 ≤ 0tmp___2_post + tmp___2_post ≤ 0tmp___2_posttmp___2_post ≤ 0tmp___2_0 + tmp___2_0 ≤ 0tmp___2_0tmp___2_0 ≤ 0tmp___1_post + tmp___1_post ≤ 0tmp___1_posttmp___1_post ≤ 0tmp___1_0 + tmp___1_0 ≤ 0tmp___1_0tmp___1_0 ≤ 0tmp___0_post + tmp___0_post ≤ 0tmp___0_posttmp___0_post ≤ 0tmp___0_0 + tmp___0_0 ≤ 0tmp___0_0tmp___0_0 ≤ 0tmp_0 + tmp_0 ≤ 0tmp_0tmp_0 ≤ 0nj_post + nj_post ≤ 0nj_postnj_post ≤ 0nj_0 + nj_0 ≤ 0nj_0nj_0 ≤ 0ni_post + ni_post ≤ 0ni_postni_post ≤ 0ni_0 + ni_0 ≤ 0ni_0ni_0 ≤ 0nDim_post + nDim_post ≤ 0nDim_postnDim_post ≤ 0nDim_0 + nDim_0 ≤ 0nDim_0nDim_0 ≤ 0bSorted_post + bSorted_post ≤ 0bSorted_postbSorted_post ≤ 0bSorted_0 + bSorted_0 ≤ 0bSorted_0bSorted_0 ≤ 0bExists_post + bExists_post ≤ 0bExists_postbExists_post ≤ 0bExists_0 + bExists_0 ≤ 0bExists_0bExists_0 ≤ 0bDomain_post + bDomain_post ≤ 0bDomain_postbDomain_post ≤ 0bDomain_0 + bDomain_0 ≤ 0bDomain_0bDomain_0 ≤ 0

10 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

21* 69 21: tmp_post + tmp_post ≤ 0tmp_posttmp_post ≤ 0tmp___4_post + tmp___4_post ≤ 0tmp___4_posttmp___4_post ≤ 0tmp___4_0 + tmp___4_0 ≤ 0tmp___4_0tmp___4_0 ≤ 0tmp___3_post + tmp___3_post ≤ 0tmp___3_posttmp___3_post ≤ 0tmp___3_0 + tmp___3_0 ≤ 0tmp___3_0tmp___3_0 ≤ 0tmp___2_post + tmp___2_post ≤ 0tmp___2_posttmp___2_post ≤ 0tmp___2_0 + tmp___2_0 ≤ 0tmp___2_0tmp___2_0 ≤ 0tmp___1_post + tmp___1_post ≤ 0tmp___1_posttmp___1_post ≤ 0tmp___1_0 + tmp___1_0 ≤ 0tmp___1_0tmp___1_0 ≤ 0tmp___0_post + tmp___0_post ≤ 0tmp___0_posttmp___0_post ≤ 0tmp___0_0 + tmp___0_0 ≤ 0tmp___0_0tmp___0_0 ≤ 0tmp_0 + tmp_0 ≤ 0tmp_0tmp_0 ≤ 0nj_post + nj_post ≤ 0nj_postnj_post ≤ 0nj_0 + nj_0 ≤ 0nj_0nj_0 ≤ 0ni_post + ni_post ≤ 0ni_postni_post ≤ 0ni_0 + ni_0 ≤ 0ni_0ni_0 ≤ 0nDim_post + nDim_post ≤ 0nDim_postnDim_post ≤ 0nDim_0 + nDim_0 ≤ 0nDim_0nDim_0 ≤ 0bSorted_post + bSorted_post ≤ 0bSorted_postbSorted_post ≤ 0bSorted_0 + bSorted_0 ≤ 0bSorted_0bSorted_0 ≤ 0bExists_post + bExists_post ≤ 0bExists_postbExists_post ≤ 0bExists_0 + bExists_0 ≤ 0bExists_0bExists_0 ≤ 0bDomain_post + bDomain_post ≤ 0bDomain_postbDomain_post ≤ 0bDomain_0 + bDomain_0 ≤ 0bDomain_0bDomain_0 ≤ 0

11 Location Addition

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

21 67 21_var_snapshot: tmp_post + tmp_post ≤ 0tmp_posttmp_post ≤ 0tmp___4_post + tmp___4_post ≤ 0tmp___4_posttmp___4_post ≤ 0tmp___4_0 + tmp___4_0 ≤ 0tmp___4_0tmp___4_0 ≤ 0tmp___3_post + tmp___3_post ≤ 0tmp___3_posttmp___3_post ≤ 0tmp___3_0 + tmp___3_0 ≤ 0tmp___3_0tmp___3_0 ≤ 0tmp___2_post + tmp___2_post ≤ 0tmp___2_posttmp___2_post ≤ 0tmp___2_0 + tmp___2_0 ≤ 0tmp___2_0tmp___2_0 ≤ 0tmp___1_post + tmp___1_post ≤ 0tmp___1_posttmp___1_post ≤ 0tmp___1_0 + tmp___1_0 ≤ 0tmp___1_0tmp___1_0 ≤ 0tmp___0_post + tmp___0_post ≤ 0tmp___0_posttmp___0_post ≤ 0tmp___0_0 + tmp___0_0 ≤ 0tmp___0_0tmp___0_0 ≤ 0tmp_0 + tmp_0 ≤ 0tmp_0tmp_0 ≤ 0nj_post + nj_post ≤ 0nj_postnj_post ≤ 0nj_0 + nj_0 ≤ 0nj_0nj_0 ≤ 0ni_post + ni_post ≤ 0ni_postni_post ≤ 0ni_0 + ni_0 ≤ 0ni_0ni_0 ≤ 0nDim_post + nDim_post ≤ 0nDim_postnDim_post ≤ 0nDim_0 + nDim_0 ≤ 0nDim_0nDim_0 ≤ 0bSorted_post + bSorted_post ≤ 0bSorted_postbSorted_post ≤ 0bSorted_0 + bSorted_0 ≤ 0bSorted_0bSorted_0 ≤ 0bExists_post + bExists_post ≤ 0bExists_postbExists_post ≤ 0bExists_0 + bExists_0 ≤ 0bExists_0bExists_0 ≤ 0bDomain_post + bDomain_post ≤ 0bDomain_postbDomain_post ≤ 0bDomain_0 + bDomain_0 ≤ 0bDomain_0bDomain_0 ≤ 0

12 SCC Decomposition

We consider subproblems for each of the 3 SCC(s) of the program graph.

12.1 SCC Subproblem 1/3

Here we consider the SCC { 5, 6, 7, 8, 9, 6_var_snapshot, 6* }.

12.1.1 Transition Removal

We remove transition 15 using the following ranking functions, which are bounded by 113.

5: −11 + 52⋅nDim_0 − 52⋅ni_0
6: 30 + 52⋅nDim_0 − 52⋅ni_0
7: 52⋅nDim_0nDim_post − 52⋅ni_0
8: 52⋅nDim_0 − 52⋅ni_0
9: −10 + 52⋅nDim_0 + 2⋅nDim_post − 52⋅ni_0
6_var_snapshot: 52⋅nDim_0 + 2⋅nDim_post − 52⋅ni_0
6*: 52⋅nDim_0 + 4⋅nDim_post − 52⋅ni_0
Hints:
46 lexWeak[ [2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 52, 2, 0, 52, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
48 lexWeak[ [0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 52, 0, 0, 52, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
8 lexWeak[ [4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 52, 0, 0, 0, 52, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 52, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
9 lexWeak[ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 52, 0, 0, 52, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
10 lexWeak[ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 52, 0, 0, 52, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
11 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 52, 0, 0, 52, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
12 lexWeak[ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 52, 0, 1, 52, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
13 lexWeak[ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 52, 0, 1, 52, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
15 lexStrict[ [0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 52, 0, 0, 52, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 2, 0, 52, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
42 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 52, 2, 0, 52, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

12.1.2 Transition Removal

We remove transitions 46, 48, 8, 9, 10, 11, 12, 13, 42 using the following ranking functions, which are bounded by −31.

5: 0
6: −2⋅nDim_post
7: 2⋅nDim_0nDim_post
8: 2⋅nDim_0
9: −4⋅nDim_0
6_var_snapshot: −30
6*: −10
Hints:
46 lexStrict[ [2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
48 lexStrict[ [0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
8 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
9 lexStrict[ [1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
10 lexStrict[ [1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
11 lexStrict[ [0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
12 lexStrict[ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
13 lexStrict[ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
42 lexStrict[ [0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

12.1.3 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

12.1.3.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 45.

12.1.3.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

12.2 SCC Subproblem 2/3

Here we consider the SCC { 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 13_var_snapshot, 13*, 21_var_snapshot, 21* }.

12.2.1 Transition Removal

We remove transition 39 using the following ranking functions, which are bounded by 36.

12: −13 + 36⋅nDim_0 − 36⋅ni_0
13: −20⋅bSorted_0 + 22⋅bSorted_post + 36⋅nDim_0 + nDim_post − 36⋅ni_0
14: −1 − 11⋅bSorted_post + 36⋅nDim_0 − 36⋅ni_0
15: −11⋅bSorted_post + 36⋅nDim_0 − 36⋅ni_0
16: −20⋅bSorted_0 + 10⋅bSorted_post + 36⋅nDim_0 − 36⋅ni_0
17: −9⋅bSorted_post + 36⋅nDim_0 − 36⋅ni_0
18: −9⋅bSorted_0 + 36⋅nDim_0 − 36⋅ni_0
19: bSorted_0 + 36⋅nDim_0 − 36⋅ni_0
20: −9⋅bSorted_post + 36⋅nDim_0 − 36⋅ni_0
21: bSorted_0 + 36⋅nDim_0nDim_post − 36⋅ni_0
22: −9 + 36⋅nDim_0 − 36⋅ni_0
23: −9⋅bSorted_0 + 36⋅nDim_0 − 36⋅ni_0
24: −9⋅bSorted_0 + 10⋅bSorted_post + 36⋅nDim_0nDim_post − 36⋅ni_0
13_var_snapshot: −1 + bSorted_0 + 22⋅bSorted_post + 36⋅nDim_0 − 2⋅nDim_post − 36⋅ni_0
13*: 22⋅bSorted_post + 36⋅nDim_0 − 36⋅ni_0
21_var_snapshot: 10 − 9⋅bSorted_0 + 36⋅nDim_0nDim_post − 36⋅ni_0
21*: bSorted_0 − 10⋅bSorted_post + 36⋅nDim_0 − 36⋅ni_0
Hints:
60 lexWeak[ [0, 0, 0, 3, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36, 0, 2, 36, 0, 22, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
62 lexWeak[ [0, 0, 1, 0, 0, 20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36, 1, 0, 36, 0, 22, 0, 0, 20, 0, 0, 0, 0, 0, 0, 0, 0] ]
67 lexWeak[ [0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36, 0, 1, 36, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0] ]
69 lexWeak[ [10, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36, 0, 1, 36, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
17 lexWeak[ [22, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36, 0, 0, 0, 36, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36, 0, 22, 0, 0, 0, 0, 0, 0, 0] ]
18 lexWeak[ [11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36, 0, 0, 36, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
19 lexWeak[ [11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36, 0, 0, 36, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
20 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36, 0, 0, 36, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
21 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36, 0, 0, 36, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
22 lexWeak[ [0, 10, 0, 0, 20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36, 0, 0, 36, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
23 lexWeak[ [0, 21, 0, 0, 20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36, 0, 0, 36, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
24 lexWeak[ [0, 21, 0, 0, 20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36, 0, 0, 36, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
25 lexWeak[ [9, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36, 0, 0, 36, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0] ]
26 lexWeak[ [0, 22, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36, 0, 0, 36, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
27 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36, 0, 0, 36, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
28 lexWeak[ [9, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36, 0, 0, 36, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0] ]
29 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36, 0, 0, 36, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
30 lexWeak[ [0, 10, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36, 0, 0, 36, 0, 0, 10, 1, 0, 0, 0, 0, 0] ]
31 lexWeak[ [0, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36, 0, 0, 36, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0] ]
32 lexWeak[ [0, 9, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36, 0, 0, 36, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
33 lexWeak[ [0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36, 0, 0, 36, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
34 lexWeak[ [0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36, 0, 0, 36, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
35 lexWeak[ [0, 0, 1, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36, 0, 0, 36, 0, 10, 0, 0, 20, 0, 0, 0, 0, 0, 0, 0, 0] ]
36 lexWeak[ [0, 10, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36, 0, 0, 36, 0, 0, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0] ]
37 lexWeak[ [10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36, 0, 1, 36, 0, 10, 0, 0, 9, 0, 0, 0, 0, 0, 0, 0, 0] ]
39 lexStrict[ [0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36, 0, 0, 36, 0, 0, 10, 1, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 36, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

12.2.2 Transition Removal

We remove transition 36 using the following ranking functions, which are bounded by 47.

12: bSorted_post + 25⋅nDim_0 + nDim_post − 26⋅nj_0tmp___2_0
13: bSorted_0 + 10⋅bSorted_post + 25⋅nDim_0 − 26⋅nj_0tmp___2_0
14: 10 + bSorted_post + 25⋅nDim_0 − 26⋅nj_0
15: 1 + bSorted_post + 25⋅nDim_0 + nDim_post − 26⋅nj_0
16: 1 + bSorted_0 + 26⋅nDim_0 + nDim_post − 26⋅nj_0
17: 1 + 26⋅nDim_0 − 26⋅nj_0
18: 26⋅nDim_0 − 26⋅nj_0
19: bSorted_0 + 10⋅bSorted_post + 25⋅nDim_0 − 2⋅nDim_post − 26⋅nj_0tmp___2_0
20: 11⋅bSorted_post + 26⋅nDim_0 − 26⋅nj_0
21: 24 + 26⋅nDim_0 − 26⋅nj_0
22: 11⋅bSorted_0 + 26⋅nDim_0 − 26⋅nj_0
23: 12⋅bSorted_post + 26⋅nDim_0 − 26⋅nj_0
24: −88⋅bSorted_0 + 26⋅nDim_0 + 11⋅nDim_post − 26⋅nj_0
13_var_snapshot: bSorted_0 + 10⋅bSorted_post + 25⋅nDim_0nDim_post − 26⋅nj_0tmp___2_0
13*: 10⋅bSorted_post + 25⋅nDim_0 − 26⋅nj_0tmp___2_0
21_var_snapshot: −87 + 26⋅nDim_0 + 11⋅nDim_post − 26⋅nj_0
21*: 25⋅bSorted_post + 26⋅nDim_0 − 26⋅nj_0
Hints:
60 lexWeak[ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 26, 0, 0, 0, 0, 0, 1, 25, 0, 10, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0] ]
62 lexWeak[ [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 26, 0, 0, 0, 0, 0, 0, 25, 0, 10, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0] ]
67 lexWeak[ [0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 26, 0, 0, 0, 0, 11, 0, 26, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
69 lexWeak[ [0, 25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 26, 0, 0, 0, 0, 0, 0, 26, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
17 lexWeak[ [9, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 26, 0, 0, 25, 0, 10, 0, 0, 0, 0, 0, 0, 0] ]
18 lexWeak[ [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 26, 0, 0, 0, 0, 1, 0, 25, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
19 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 26, 0, 0, 0, 0, 1, 0, 25, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
20 lexWeak[ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 26, 0, 0, 0, 0, 0, 0, 25, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
21 lexWeak[ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 26, 0, 0, 0, 0, 0, 0, 25, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
22 lexWeak[ [1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 26, 0, 0, 0, 0, 1, 0, 25, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
23 lexWeak[ [1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 26, 0, 0, 0, 0, 1, 0, 25, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
24 lexWeak[ [1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 26, 0, 0, 0, 0, 1, 0, 25, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
25 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 26, 0, 0, 0, 0, 0, 0, 26, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
26 lexWeak[ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 26, 0, 0, 0, 0, 0, 2, 25, 0, 10, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0] ]
27 lexWeak[ [0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 26, 0, 0, 0, 0, 0, 0, 26, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
28 lexWeak[ [0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 26, 0, 0, 0, 0, 0, 0, 26, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
29 lexWeak[ [0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 26, 0, 0, 0, 0, 0, 0, 26, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
30 lexWeak[ [25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 26, 0, 0, 0, 26, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 26, 0, 25, 0, 0, 0, 0, 0, 0, 0] ]
31 lexWeak[ [0, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 26, 0, 0, 0, 0, 0, 0, 26, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
32 lexWeak[ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 26, 0, 0, 0, 0, 0, 0, 26, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
33 lexWeak[ [0, 12, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 26, 0, 0, 0, 0, 0, 0, 26, 0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
34 lexWeak[ [0, 12, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 26, 0, 0, 0, 0, 0, 0, 26, 0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
35 lexWeak[ [0, 0, 0, 10, 89, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 26, 0, 0, 0, 0, 1, 0, 26, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
36 lexStrict[ [12, 0, 0, 11, 88, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 26, 0, 0, 0, 0, 0, 0, 26, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 11, 88, 0, 0, 26, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
37 lexWeak[ [0, 0, 0, 0, 0, 88, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 26, 0, 0, 0, 0, 11, 0, 26, 0, 0, 0, 0, 88, 0, 0, 0, 0, 0, 0, 0, 0] ]

12.2.3 Transition Removal

We remove transitions 60, 62, 67, 69, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37 using the following ranking functions, which are bounded by −52.

12: −30⋅bSorted_post
13: −11⋅bSorted_0 − 30⋅bSorted_post
14: −20⋅bSorted_post
15: nDim_post
16: 0
17: 6⋅nDim_0
18: 50⋅bSorted_post
19: −1 − 11⋅bSorted_0 − 4⋅nDim_post
20: 10⋅bSorted_post + 6⋅nDim_0
21: 3⋅nDim_post
22: −9 + 6⋅nDim_0
23: 6⋅nDim_0 + 2⋅nDim_post
24: 20⋅bSorted_postnDim_post
13_var_snapshot: −11⋅bSorted_0 − 4⋅nDim_post
13*: −30⋅bSorted_postnDim_post
21_var_snapshot: 20⋅bSorted_post
21*: −40⋅bSorted_0 + 50⋅bSorted_post + 3⋅nDim_post
Hints:
60 lexStrict[ [30, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0] , [30, 0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
62 lexStrict[ [0, 0, 1, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 30, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0] , [30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
67 lexStrict[ [20, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
69 lexStrict[ [0, 50, 0, 0, 40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 50, 0, 3, 40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
17 lexStrict[ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 30, 0, 0, 0, 0, 0, 0] , [30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
18 lexStrict[ [0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
19 lexStrict[ [0, 30, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
20 lexStrict[ [0, 20, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
21 lexStrict[ [0, 20, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
22 lexStrict[ [0, 30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 30, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
23 lexStrict[ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
24 lexStrict[ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
25 lexStrict[ [50, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
26 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 4, 0, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
27 lexStrict[ [0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 10, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
28 lexStrict[ [40, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 10, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
29 lexStrict[ [0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 10, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
30 lexStrict[ [0, 0, 3, 0, 0, 40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 50, 0, 0, 40, 0, 0, 0, 0] , [0, 50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
31 lexStrict[ [50, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
32 lexStrict[ [10, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 2, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
33 lexStrict[ [0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 2, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
34 lexStrict[ [0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 2, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
35 lexStrict[ [0, 20, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 20, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
37 lexStrict[ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

12.2.4 Splitting Cut-Point Transitions

We consider 2 subproblems corresponding to sets of cut-point transitions as follows.

12.2.4.1 Cut-Point Subproblem 1/2

Here we consider cut-point transition 59.

12.2.4.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

12.2.4.2 Cut-Point Subproblem 2/2

Here we consider cut-point transition 66.

12.2.4.2.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

12.3 SCC Subproblem 3/3

Here we consider the SCC { 10, 11, 10_var_snapshot, 10* }.

12.3.1 Transition Removal

We remove transition 41 using the following ranking functions, which are bounded by −38.

10: bDomain_0 − 4⋅ni_0
11: bDomain_0 − 2⋅bSorted_post − 4⋅ni_0
10_var_snapshot: −4⋅ni_0
10*: bDomain_0 + 3⋅bDomain_post − 2⋅bSorted_post − 4⋅ni_0
Hints:
53 lexWeak[ [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
55 lexWeak[ [0, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0] ]
16 lexWeak[ [0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0] ]
41 lexStrict[ [3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 3, 0, 1, 0] , [0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 4, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

12.3.2 Transition Removal

We remove transitions 53, 55, 16 using the following ranking functions, which are bounded by −2.

10: 0
11: bDomain_0bDomain_post
10_var_snapshot: bDomain_post
10*: 1
Hints:
53 lexStrict[ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
55 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] , [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]
16 lexStrict[ [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1] , [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ]

12.3.3 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

12.3.3.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 52.

12.3.3.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

Tool configuration

T2Cert