ceta_eq: termination proof not accepted
1: error below switch to dependency pairs
1.1: error below the dependency graph processor
 1.1.1: error when applying the reduction pair processor with usable rules to remove from the DP problem
  pairs:
  
  top#(mark(X)) -> top#(proper(X))
  top#(ok(X)) -> top#(active(X))
  rules:
  
  active(app(nil, YS)) -> mark(YS)
  active(app(cons(X, XS), YS)) -> mark(cons(X, app(XS, YS)))
  active(from(X)) -> mark(cons(X, from(s(X))))
  active(zWadr(nil, YS)) -> mark(nil)
  active(zWadr(XS, nil)) -> mark(nil)
  active(zWadr(cons(X, XS), cons(Y, YS))) -> mark(cons(app(Y, cons(X, nil)), zWadr(XS, YS)))
  active(prefix(L)) -> mark(cons(nil, zWadr(L, prefix(L))))
  active(app(X1, X2)) -> app(active(X1), X2)
  active(app(X1, X2)) -> app(X1, active(X2))
  active(cons(X1, X2)) -> cons(active(X1), X2)
  active(from(X)) -> from(active(X))
  active(s(X)) -> s(active(X))
  active(zWadr(X1, X2)) -> zWadr(active(X1), X2)
  active(zWadr(X1, X2)) -> zWadr(X1, active(X2))
  active(prefix(X)) -> prefix(active(X))
  app(mark(X1), X2) -> mark(app(X1, X2))
  app(X1, mark(X2)) -> mark(app(X1, X2))
  app(ok(X1), ok(X2)) -> ok(app(X1, X2))
  cons(mark(X1), X2) -> mark(cons(X1, X2))
  cons(ok(X1), ok(X2)) -> ok(cons(X1, X2))
  from(mark(X)) -> mark(from(X))
  from(ok(X)) -> ok(from(X))
  prefix(mark(X)) -> mark(prefix(X))
  prefix(ok(X)) -> ok(prefix(X))
  proper(app(X1, X2)) -> app(proper(X1), proper(X2))
  proper(nil) -> ok(nil)
  proper(cons(X1, X2)) -> cons(proper(X1), proper(X2))
  proper(from(X)) -> from(proper(X))
  proper(s(X)) -> s(proper(X))
  proper(zWadr(X1, X2)) -> zWadr(proper(X1), proper(X2))
  proper(prefix(X)) -> prefix(proper(X))
  s(mark(X)) -> mark(s(X))
  s(ok(X)) -> ok(s(X))
  top(mark(X)) -> top(proper(X))
  top(ok(X)) -> top(active(X))
  zWadr(mark(X1), X2) -> mark(zWadr(X1, X2))
  zWadr(X1, mark(X2)) -> mark(zWadr(X1, X2))
  zWadr(ok(X1), ok(X2)) -> ok(zWadr(X1, X2))
  
   the pairs 
  top#(mark(X)) -> top#(proper(X))
  
  could not apply the generic root reduction pair processor with the following
  SCNP-version with mu = MS and the level mapping defined by 
  pi(top#) = [(epsilon,0),(1,0)]
  Argument Filter: 
  pi(top#/1) = []
  pi(ok/1) = 1
  pi(active/1) = 1
  pi(mark/1) = [1]
  pi(proper/1) = 1
  pi(app/2) = [1,2]
  pi(nil/0) = []
  pi(cons/2) = [1]
  pi(from/1) = [1]
  pi(s/1) = 1
  pi(zWadr/2) = [2,1]
  pi(prefix/1) = [1]
  
  RPO with the following precedence
  precedence(top#[1]) = 1
  precedence(mark[1]) = 0
  precedence(app[2]) = 3
  precedence(nil[0]) = 2
  precedence(cons[2]) = 0
  precedence(from[1]) = 4
  precedence(zWadr[2]) = 3
  precedence(prefix[1]) = 2
  
  precedence(_) = 0
  and the following status
  status(top#[1]) = lex
  status(mark[1]) = lex
  status(app[2]) = lex
  status(nil[0]) = lex
  status(cons[2]) = lex
  status(from[1]) = lex
  status(zWadr[2]) = lex
  status(prefix[1]) = lex
  
  status(_) = lex
  
  problem when orienting DPs
  cannot orient pair top#(ok(X)) -> top#(active(X)) weakly:
  [(top#(ok(X)),0),(ok(X),0)] >=mu [(top#(active(X)),0),(active(X),0)] could not be ensured