ceta_eq: termination proof not accepted
1: error below switch to dependency pairs
1.1: error below the dependency graph processor
 1.1.1: error when applying the reduction pair processor with usable rules to remove from the DP problem
  pairs:
  
  sel#(s(N), cons(X, XS)) -> sel#(N, activate(XS))
  rules:
  
  activate(n__from(X)) -> from(activate(X))
  activate(n__s(X)) -> s(activate(X))
  activate(n__zWquot(X1, X2)) -> zWquot(activate(X1), activate(X2))
  activate(X) -> X
  from(X) -> cons(X, n__from(n__s(X)))
  from(X) -> n__from(X)
  minus(X, 0) -> 0
  minus(s(X), s(Y)) -> minus(X, Y)
  quot(0, s(Y)) -> 0
  quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y)))
  s(X) -> n__s(X)
  sel(0, cons(X, XS)) -> X
  sel(s(N), cons(X, XS)) -> sel(N, activate(XS))
  zWquot(XS, nil) -> nil
  zWquot(nil, XS) -> nil
  zWquot(cons(X, XS), cons(Y, YS)) -> cons(quot(X, Y), n__zWquot(activate(XS), activate(YS)))
  zWquot(X1, X2) -> n__zWquot(X1, X2)
  
   the pairs 
  sel#(s(N), cons(X, XS)) -> sel#(N, activate(XS))
  
  could not apply the generic root reduction pair processor with the following
  SCNP-version with mu = MS and the level mapping defined by 
  pi(sel#) = [(1,2),(2,0)]
  Argument Filter: 
  pi(sel#/2) = []
  pi(s/1) = [1]
  pi(cons/2) = 2
  pi(activate/1) = 1
  pi(n__from/1) = []
  pi(from/1) = []
  pi(n__s/1) = [1]
  pi(n__zWquot/2) = [2,1]
  pi(zWquot/2) = [2,1]
  pi(quot/2) = 1
  pi(nil/0) = []
  pi(0/0) = []
  pi(minus/2) = [1,2]
  
  RPO with the following precedence
  precedence(sel#[2]) = 0
  precedence(s[1]) = 3
  precedence(n__from[1]) = 4
  precedence(from[1]) = 4
  precedence(n__s[1]) = 3
  precedence(n__zWquot[2]) = 6
  precedence(zWquot[2]) = 6
  precedence(nil[0]) = 5
  precedence(0[0]) = 1
  precedence(minus[2]) = 2
  
  precedence(_) = 0
  and the following status
  status(sel#[2]) = lex
  status(s[1]) = lex
  status(n__from[1]) = lex
  status(from[1]) = lex
  status(n__s[1]) = lex
  status(n__zWquot[2]) = lex
  status(zWquot[2]) = lex
  status(nil[0]) = lex
  status(0[0]) = lex
  status(minus[2]) = lex
  
  status(_) = lex
  
  problem when orienting DPs
  cannot orient pair sel#(s(N), cons(X, XS)) -> sel#(N, activate(XS)) strictly:
  [(s(N),2),(cons(X, XS),0)] >mu [(N,2),(activate(XS),0)] could not be ensured