
An Isabelle/HOL Formalization of AProVE’s
Termination Method for LLVM IR

Max W. Haslbeck
René Thiemann

maximilian.haslbeck@uibk.ac.at
rene.thiemann@uibk.ac.at
University of Innsbruck

Innsbruck, Austria

Abstract
AProVE is a powerful termination prover for various pro-
gramming languages, including a termination analysismethod
for imperative programs specified in the LLVM intermediate
representation (IR). The method internally works in three
steps: first, it transforms LLVM IR code into a symbolic exe-
cution graph; second, the graph is translated into an integer
transition system; finally, termination of the transition sys-
tem is proved by the back end of AProVE.

Since AProVE is unverified software, our aim is to increase
its reliability by certifying the generated proofs. To this end,
we require formal semantics of all program representations,
i.e., for LLVM IR, for symbolic execution graphs and for inte-
ger transition systems. As the latter is already available, we
define the former ones. We note that our semantics for LLVM
IR use arithmetic with unbounded integers. We further verify
the first and the second step of AProVE’s terminationmethod,
including verified algorithms to check concrete proofs. Since
the third step can already be certified, we obtain a complete
formally verified method for certifying AProVE’s termina-
tion proofs of LLVM IR programs. The whole formalization
has been done in Isabelle/HOL and our certifier is available
as a Haskell program via code generation.

CCS Concepts: • Theory of computation → Program
semantics; • Software and its engineering → Software
verification; Automated static analysis.

Keywords: formal verification, Isabelle/HOL, static program
analysis, termination analysis

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
CPP ’21, January 18–19, 2021, Virtual, Denmark
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8299-1/21/01.
https://doi.org/10.1145/3437992.3439935

ACM Reference Format:
Max W. Haslbeck and René Thiemann. 2021. An Isabelle/HOL For-
malization of AProVE’s Termination Method for LLVM IR. In Pro-
ceedings of the 10th ACM SIGPLAN International Conference on Cer-
tified Programs and Proofs (CPP ’21), January 18–19, 2021, Virtual,
Denmark. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3437992.3439935

1 Introduction
Consider the C program in Figure 1, which simply counts
down the value in variable x and then returns successfully.
It terminates assuming that the external function call that
assigns an arbitrary initial value to x terminates. Programs
such as this one are part of the C_Integer category in the An-
nual International Termination and Complexity Competition
(termCOMP) [8]. Termination provers need to show termi-
nation or non-termination of C programs in this category.
As of now, the termination tools are only required to provide
a yes/no-answer in combination with some human-readable
output. So one has to trust that the analyzing tools do not
contain any bugs and in case of conflicting answers of two
tools, a human referee is necessary. Such problems occured
early on in the history of the termination competition. It was
decided to add special categories where termination provers
need to generate machine-readable certificates which prove
their answer and these where then checked by independent
certifier tools. To have the highest trust possible in the cer-
tifiers, these where developed and verified within theorem
provers like Isabelle/HOL and Coq.

The problem is that the verified certifiers so far are limited
to core evaluation mechanisms such as term rewriting [5, 17]
or integer transition systems [4]. Our goal is now to develop
a highly trustworthy certifier for termination proofs of C
programs. To this end, we use Isabelle/HOL to specify the
foundational parts of the certification and to develop the
accompanying algorithms.

Herewe focus on certifyingAProVE’s [7] termination tech-
nique for C programs [15, 16]. Ströder et al. verified termi-
nation and memory safety of C programs by first compiling
them to the LLVM Intermediate Representation (IR) [1, 12].
Compared to C, the LLVM IR has a simpler syntax and has
clearly defined platform-independent semantics. From the
LLVM IR code a so called symbolic execution graph (SEG) is

https://doi.org/10.1145/3437992.3439935
https://doi.org/10.1145/3437992.3439935
https://doi.org/10.1145/3437992.3439935

CPP ’21, January 18–19, 2021, Virtual, Denmark Max W. Haslbeck and René Thiemann

extern int __VERIFIER_nondet_int(void);

int main()
{

int x;
x = __VERIFIER_nondet_int ();
while (x >= 0) {

x = x - 1;
}
return 0;

}

Figure 1. Example C code

created. The defining property of the SEG is that any (infi-
nite) program run of the LLVM IR code is represented by
an (infinite) path in the SEG. In the next step the SEG is
converted to an integer transition system (ITS) such that the
termination of the ITS implies the termination of the SEG
and therefore the termination of the LLVM IR code.

In this work we verify this approach in the theorem prover
Isabelle/HOL [13]. Our main contributions are

• a formal definition of the semantics of LLVM IR code,
• a formal definition of the SEG and its semantics,
• a formal verification of the fact that an SEG can simu-
late LLVM IR program runs and

• a formal verification of the correctness of the transfor-
mation of an SEG to an ITS.

Since there already exists a certifier for termination proofs
of ITSs, we are in the end able to verify termination proofs for
LLVM IR code. The resulting certifier is able to validate nearly
50 % of the termination proofs of AProVE for the C_integer
programs from the latest termination competition.

Outline. In Section 2 we briefly explain the basics of Is-
abelle/HOL and LLVM needed for this paper. Section 3 de-
scribes our Isabelle definition of the LLVM semantics. In
Section 4 we formally define the SEG, its semantics and how
to verify that an SEG over-approximates an LLVM IR pro-
gram. Section 5 explains the details of the implementation
of the project in Isabelle and AProVE. It also features the ex-
perimental evaluation of our code. We conclude in Section 6
and also outline future work there.

Related Work. The Vellvm project formalized a signif-
icant subset of the semantics of the LLVM IR in the Coq
theorem prover [18]. They cover a bigger part of the LLVM
IR semantics than we do: for example, Vellvm contains a
memory model and bit vector arithmetic, both of which are
still future work for us. The Vellvm project was then able to
verify optimization transformations typically done on LLVM
IR. Although LLVM IR semantics were already available in
Coq we decided to use Isabelle for our approach. The main
reason for this decision is the availability of the IsaFoR li-
brary (which supports, for example, termination proofs of
ITSs generated by AProVE) in Isabelle.

Lammich specified a subset of the LLVM IR semantics in
Isabelle in order to generate verified LLVM IR functions [11].
His semantics contain proper bit vector operations and a
memory model. We may try to integrate parts of these se-
mantics into our work in the future.

TheAnnual International Termination and Complexity Com-
petition (termCOMP) and the Competition on Software Ver-
ification (SV-COMP) [2] both feature categories on the ter-
mination of imperative programs, for example C or Java
programs. Both competitions give a good overview of the
latest research developments. In the SV-COMP competition,
software verifiers have to provide a so called verification
witness that is then used by independent validator software
to check the verification result. The validators are unveri-
fied software, but with the usage of multiple independently
developed validators a high degree of certainty is achieved.
Our approach has the advantage that one only needs to trust
our LLVM IR semantics definition and the Isabelle kernel to
in turn be able to trust the results of our exported verified
certifier.

Our project depends on the IsaFoR/CeTA libraries [17]. The
IsaFoR/CeTA project was started with the aim of verifying
output of termination provers for term rewrite systems in
the termCOMP competition, but in the meantime CeTA can
also certify termination proofs for integer transitions sys-
tems [4]. Our work is an extension to IsaFoRwhere we utilize
its functionality to validate termination proofs of LLVM IR
programs.

2 Preliminaries
2.1 Isabelle/HOL
Our formalization is developed in the proof assistant Is-
abelle/HOL [13]. When we use the name Isabelle throughout
this work we mean, Isabelle/HOL, that is Isabelle extended
with the HOL axioms. We state theorems and definitions in
this paper in Isabelle syntax, with Isabelle keywords writ-
ten in bold. Definitions and theorems presented below may
slightly differ from the actual Isabelle source code. This was
done to make them understandable to someone with a basic
background in functional programming and logic but with-
out the knowledge of special Isabelle intricacies. We make
heavy use of Isabelle’s sum type defined as datatype ('a, 'b)
sum = Inl 'a | Inr 'b (notation: "'a + 'b") where 'a and 'b are
type variables (see Figure 4 for an example of its usage). It is
equivalent to Haskell’s Either type and we adopt the same
convention to encode error on the left (Inl) side and correct
(or right) values on the right (Inr) side. We use it throughout
our formalization as it has support for monadic notation and
we can model basic error throwing and catching with it [14].

All lemmas and theorems stated here are proved in Isabelle.
The theory files are available as part of the IsaFoR library.

An Isabelle/HOL Formalization of AProVE’s Termination Method for LLVM IR CPP ’21, January 18–19, 2021, Virtual, Denmark

define i32 @main() {
bb:

%tmp = call i32 @__VERIFIER_nondet_int ()
br label %bb1

bb1:
%.0 = phi i32 [%tmp , %bb], [%tmp4 , %bb3]
%tmp2 = icmp sge i32 %.0, 0
br i1 %tmp2 , label %bb3 , label %bb5

bb3:
%tmp4 = sub nsw i32 %.0, 1
br label %bb1

bb5:
ret i32 0

}

declare i32 @__VERIFIER_nondet_int ()

Figure 2. LLVM IR example

We also created a website for all the supplementary mate-
rial1 which includes links to HTML versions of the Isabelle
theories. These can be viewed without installing Isabelle.

2.2 LLVM
The LLVM IR is defined in the LLVM Language Reference [1].
When we refer to LLVM throughout this paper we mean
LLVM version 9.0.1 which we also used in our implementa-
tions. An LLVM IR program2 consists of a list of functions,
global variables and symbol table entries. We ignore global
variables and symbol table entries for now and only allow
function definitions and function declarations in our syn-
tax. An LLVM function definition or declaration has a type,
a name and list of parameters. A function definition also
contains of a list of blocks. A block consists of a label, phi
nodes, a list of instructions and a terminating instruction.
Branching is only possible at a terminating instruction at the
end of a block and only into another block inside the same
function. Phi nodes are only allowed at the start of block and
assign a new value to a variable based on the previous block.
Phi nodes are a standard element of single static assignment
form (SSA) [6]. In SSA form variables get only assigned once
and it is often used in intermediate languages of compilers.
As an example, the C code within Figure 1 is compiled

into LLVM code in Figure 2. When entering basic block bb1

from block bb, the variable %.0 gets assigned the value of
%tmp; similarly it will be the value of %tmp4 when entering
from block bb3. The terminating instruction of block bb1 is a
conditional jump to block bb3 or bb5, depending on the result
%tmp2 of the comparison in the previous line.

datatype basic_block = Basic_block

(name : "name")
(phis : "phi list")
(instructions : "instruction list")
(terminator : "terminator")

datatype llvm_fun = Function

(fun_name: "name")
(return_type: "llvm_type")
(params: "parameter list")
(blocks: "basic_block list")
| ExternalFunction
(fun_name: "name")
(return_type: "llvm_type")
(params: "parameter list")

datatype llvm_prog = Llvm_prog

(funs : "llvm_fun list")

Figure 3. llvm_prog definition in Isabelle

3 LLVM Semantics in Isabelle/HOL
3.1 LLVM Syntax
We adopt a straightforward approach to model the LLVM
IR syntax in Isabelle/HOL. The abstract datatype definitions
are similar to the ones used in the Vellvm project [18]. Fig-
ure 3 shows the definitions of basic blocks, functions and
programs in Isabelle. Phi nodes, instructions and terminating
instructions are separated in the basic_block definition even
though they appear as one list in the LLVM IR source. The
advantage is that then the type system will ensure certain
properties on the input, e.g., that no terminator instruction
appears in the middle of a basic block.
For function definitions we distinguish between internal

and external functions. Only the former will have an imple-
mentation, given as a list of basic blocks. For example, the
function main in the LLVM IR program of Figure 2 will be-
come a Function in Isabelle, whereas __VERIFIER_nondet_int

will become an ExternalFunction.
The formal syntax of LLVM IR does not enforce any re-

strictions regarding the SSA form. This is not a problem in
our setting, since the property of being in SSA form is not
exploited in AProVE’s termination method.

3.2 Small Step Semantics
For modeling the semantics of LLVM IR programs, we first
need a formal notion of LLVM constants, i.e., numbers.3 In

1http://cl-informatik.uibk.ac.at/isafor/experiments/llvm/cpp2021
2The proper notion would be an LLVM IR module, but we prefer to speak
of programs.
3As already mentioned, we do not have any memory model. Consequently,
there is only one type that represents constants, namely numbers, which
includes the Booleans that are represented by 0 and 1.

http://cl-informatik.uibk.ac.at/isafor/experiments/llvm/cpp2021

CPP ’21, January 18–19, 2021, Virtual, Denmark Max W. Haslbeck and René Thiemann

fun step :: "llvm_prog ⇒ ll_state ⇒ stuck + ll_state"

where

"step lf ls = case frames ls of

(f#fs) ⇒
case find_statement lf (pos f) of

Inr (Instruction i) ⇒ run_instruction lf ls f fs i

| Inr (Terminator t) ⇒ terminate_frame lf ls f fs t

| _ ⇒ static_error ''Can't find next instruction''

| [] ⇒ Inl Program_Termination"

Figure 4. Deterministic semantics: the step function

the formal setting constants are modeled as a pair of an un-
bounded integer together with a bit length. Here, the bit
length is purely used for type checking, whereas the arith-
metic is performed using mathematical integers ignoring
any bit length. For example, consider the basic block bb5 in
Figure 2. The constant 0 of type i32 would be modeled as
pair (0,32). If one would replace the code of bb5 by ret i16 0,
this would result in an error during execution, since the re-
turned constant would have a different type than that of the
function main. By contrast, using ret i32 (2^33) would not be
a problem, since internally our semantics use unbounded
integer arithmetic. In future work, we may change this to a
proper bit-vector semantics.
Next, we define the datatype ll_state, which is a list of

frames, tomodel themachine state. A frame holds the current
position (a triple of function name, block name and current
line) and an assignment from program variables to LLVM
constants, called stack.
Finally, we choose a small step operational semantics to

model the LLVM IR semantics in Isabelle. This choice is
motivated by the fact, that the termination of an LLVM IR
program is then easily described as strong normalization of
the small step relation.
We model the deterministic parts of our semantics by a

function step, see Figure 4. Based on the current position in
the first frame, it looks up the current instruction and returns
a new ll_state or a value of type stuck. The stuck datatype
encodes states where the program halts. This can be because
of errors or if the program returns successfully. In order to ex-
ecute an instruction, the run_instruction function is invoked,
where a further case analysis on the kind of instruction is
performed. At this point, step is incomplete, since only calls
to internal functions are permitted (via the Isabelle function
call_function), but calls to external functions – which might
be non-deterministic – will result in an error state.

Our semantics are very similar to the one described in the
Vellvm project. For instance, we use the same case analysis
on the positions within a basic block as in Vellvm: the step-
function in Figure 4 distinguishes between being in the main
part of the basic block (Instruction), or being at the end of
the block (Terminator); there is no case for phi instructions,

inductive assign_unknown_value for s f fs n s' where

"s' = update_frames_stack s f fs n (Inr c)
=⇒ assign_unknown_value s f fs n s'"

definition call_arbitrary_function where

"call_arbitrary_function prog f fs n g ps s'=

case map_of_funs prog fn of

Some (ExternalFunction t fn ps') ⇒
assign_unknown_value s f fs n s′

| _ ⇒ s = call_function fn os"

definition step'

:: "llvm_prog ⇒ ll_state ⇒ stuck + ll_state ⇒ bool"

where

"step' prog s s' = case frames s of

(f#fs) ⇒
case find_statement prog (pos f) of

Inr (Instruction (Named n (Call t g ps))) ⇒
call_arbitrary_function prog f fs n g ps s′

| _ ⇒ s'= step prog s)
| [] ⇒ s'= step prog s)"

Figure 5. Full semantics: the step' predicate

since these are immediately executed after branching to a
new basic block. [18, Section 4] gives a small overview of
the details that one has to pay attention to when formally
defining LLVM IR semantics in a theorem prover.
While step works for internal functions, we also need se-

mantics that additionally cover external functions. To this
end we introduce a non-deterministic relation in Figure 5,
modeled by the predicate step'. We assume all external func-
tions terminate and return an indeterminate integer value,
i.e., one can choose an arbitrary constant c within the in-
ductive predicate assign_unknown_value. Moreover, we reuse
the functionality of step whenever possible. To be more con-
crete, step' only introduces a new case for function calls and
otherwise refers to step; moreover, call_arbitrary_function
also delegates internal function calls to call_function from
the step-semantics.

Limitations. Right now our semantics do not correctly
model the LLVM IR semantics. We do not have a memory
model and we consider all integers as unbounded. Note that
the latter deviation from the LLVM IR standard is also present
in the annual termination competition (C_integer programs),
as well as in the LLVM termination analysis method of
AProVE [16]. Therefore undefined behavior in the case of
invalid memory accesses or integer overflows cannot occur.
Dividing by zero also leads to undefined behavior but our
LLVM IR syntax and semantics do not yet implement the
two division operations sdiv and udiv.

An Isabelle/HOL Formalization of AProVE’s Termination Method for LLVM IR CPP ’21, January 18–19, 2021, Virtual, Denmark

definition step'_relation :: "llvm_prog ⇒ ll_state rel"

where

"step'_relation prog = {(s, s') . step' prog s (Inr s')}"

Figure 6. Modeling Infinite Runs via the step'_relation

pos: (main, bb, 0), %tmp = call i32 @__VERIFIER_nondet_int()
{}
⊤

A

pos: (main, bb, 1), br %bb1
{%tmp = (v1, i32)}

⊤
B

pos: (main, bb1, 1), %tmp2 = icmp sge %.0 0
{%.0 = (v2, i32), %tmp = (v1, i32)}

v2 = v1
C

Eval v1

Br (v2, v1)

Figure 7. Start of SEG representing program in Figure 2

We did not implement static checks for errors such as
violating SSA form, referencing undefined variables or typ-
ing errors. This is not a problem for a correct termination
analysis, since these errors would result in programs that are
rejected by the LLVM IR compiler and cannot be executed
at all. However, our formal semantics still contain some of
these checks, e.g., undefined variables and typing errors are
detected during an execution of step' and result in an error-
state at runtime. For readability reasons we did not include
these checks in Figures 4 and 5, but they are visible in our
Isabelle sources.

Termination. Note that the step' predicate relates an
input state to the next state or to an error state. To study
termination it suffices to concentrate on infinite runs, so in
particular in runs where no error occurs. Therefore we define
step'_relation as a relation between two (non-error) states,
cf. Figure 6. Hence, a non-terminating LLVM program results
in an infinite chain w.r.t. the step'_relation, i.e., termination
of an LLVM program prog on initial states init is defined as

SN_on (step'_relation prog) init.
Here, SN_on is Isabelle’s notion of strong normalization, i.e.
the predicate is satisfied if and only if there exists no infinite
chain using the relation step'_relation prog starting in init.

4 Symbolic Execution Graph
To prove termination of LLVM IR programs, AProVE uses
symbolic execution graphs (SEG) as intermediate representa-
tions of program runs. Figure 7 and Figure 8 show parts of
the SEG constructed from the LLVM IR code in Figure 2.
An SEG consists of a finite set of nodes, each node in an

SEG being an abstract state that represents several concrete
states. A node contains the current position, an assignment
from program variables to logical variables and a formula

over the logical variables. We call the formula in the abstract
state the knowledge base. For instance, the position of node C
in Figure 7 points to line 1 of building block bb1 inside the
function main, the values of program variables %.0 and %tmp

are stored in the logical variables v2 and v1, respectively,
and the knowledge base expresses that both logical variables
contain the same value. Hence, node C represents a frame
of a concrete state that has the same position as node C,
and where the assignment of program variables in the frame
stores the same values for %.0 and %tmp.

At this point it is interesting to observe that there is mis-
match between abstract states and concrete states: a concrete
state can have several frames – one for each (recursive) func-
tion call; by contrast, an abstract state describes a single
frame. This mismatch is not present in [16], where an ab-
stract state consists of a list of abstract frames. In that setting,
function calls are handled by pushing and popping abstract
frames. With this method one cannot handle recursive func-
tions, whereas, the current implementation of AProVE can
handle them. Furthermore, the current implementation of
SEGs in AProVE does not correspond to the definition of
SEGs in [16]. Instead it uses abstract states that encode a
single frame as is described in this paper. The solution to the
mismatch problem is to relate abstract states only to the first
frame of any concrete state. In Section 4.3 we describe how
we can then still handle function calls.

An SEG is constructed via several inference rules. The ma-
jority of the rules allow us to perform a symbolic evaluation
step depending on the current instruction, e.g., assignment
(Eval) or branching (Br). Moreover, there is a rule for case
splitting (Refine) where a node gets outgoing edges to two
different nodes. And finally, there is a rule for generaliza-
tions (Gen) where a start node can be connected to a target
node and all abstract states represented by the start node are
also represented by the the target node. For certain inference
rules one needs to store a renaming of variables as we will
show in the following example. Figure 7 and Figure 8 show
parts of the SEG created from the LLVM program in Figure 2.
Here, Figure 7 shows the first three nodes and Figure 8 shows
the lower part of the SEG. The paths from the first nodes to
the lower part all represent at least one run through the loop
in the LLVM IR program. Therefore all program variables
are assigned in node D and also in node L. They are both at
the same position and node D is more general than node L,
but one needs to rename the local variables accordingly, e.g.,
v12 to v18, since program variable %.0 stores v12 in node D,
but v18 in node L.
The soundness of the approach hinges on the property

that whenever a concrete state can make a step via the LLVM
semantics, there is a non-empty path in the SEG that rep-
resents that step. The correctness of the construction of an
SEG has been shown “on paper” [16]. We now go one step
further and show the correctness of the concepts surround-
ing an SEG in Isabelle. This includes the definition of an SEG

CPP ’21, January 18–19, 2021, Virtual, Denmark Max W. Haslbeck and René Thiemann

pos: (main, bb1, 1), %tmp2 = icmp sge %.0 0
{%.0 = v12, %tmp = v11, %tmp2 = v13, %tmp4 = v14}

v2 = v11 ∧ v13 = 1 ∧ v12 = v14 ∧ v2 >= 0
D

pos: (main, bb1, 1), %tmp2 = icmp sge %.0 0
{%.0 = v12, %tmp = v11, %tmp2 = v13, %tmp4 = v14}

. . . ∧ v12 < 0
E

pos: (main, bb1, 1), %tmp2 = icmp sge %.0 0
{%.0 = v12, %tmp = v11, %tmp2 = v13, %tmp4 = v14}

. . . ∧ v12 ≥ 0
F

pos: (main, bb1, 2), br %tmp2, %bb3, %bb5
{%.0 = v12, %tmp = v11, %tmp2 = v15, %tmp4 = v14}

. . . ∧ v15 = 1
G

pos: (main, bb1, 2), br %tmp2, %bb3, %bb5
{%.0 = v12, %tmp = v11, %tmp2 = v16, %tmp4 = v14}

. . . ∧ v16 = 0
H

pos: (main, bb3, 0), %tmp4 = sub %.0 1
{%.0 = v12, %tmp = v11, %tmp2 = v15, %tmp4 = v14}

. . .
I

pos: (main, bb5, 0), ret 0
{%.0 = v12, %tmp = v11, %tmp2 = v16, %tmp4 = v14}

. . .
J

pos: (main, bb3, 1)
br %bb1

{%.0 = v12, %tmp = v11, %tmp2 = v15, %tmp4 = v17}
. . . ∧ v17 = v12 - 1

K

pos: (main, bb1, 1), %tmp2 = icmp sge %.0 0
{%.0 = v18, %tmp = v11, %tmp2 = v15, %tmp4 = v17}

v2 = v11 ∧ v13 = 1 ∧ v12 = v14 ∧ v2 ≥ 0
∧ v12 >= 0 ∧ v15 = 1 ∧ v17 = v12 - 1 ∧ v18 = v17

L

Gen (v12, v18) (v11, v11) (v13, v15) (v14, v17)

Br [(v18, v17)]

Refine v12 ≥ 0 Refine v12 < 0

Icmp v15 True Icmp v16 False

CondBr [] True CondBr [] False

Eval v17

Figure 8. Lower part of SEG representing program in Figure 2,
relevant changes to the previous state are bold, . . . represent the knowledge base from the previous state

datatype ('pos,'pv,'lv) abstract_state =

As (pos : "'pos")
(stack : "'pv ⇒ 'lv option")
(kb : "'lv IA.formula")

datatype ('pos,'n,'pv,'lv) graph' = Seg

(edges :: "('n × 'n) set")
(as_of_node :: "'n ⇒ ('pos,'pv,'lv) abstract_state")
(renaming_of_edge :: "('n × 'n) ⇒ ('lv ⇒ 'lv)")

inductive represents_state where

"frame.pos f = abstract_state.pos as

∧ same_stack_keys (frame.stack f) (abstract_state.stack as)
∧ (∀n lv i. frame.stack f n = Some i

−→ abstract_state.stack as n = Some lv −→ v lv = i)
∧ v |=IA kb as

=⇒ represents_state (f : fs) as"

Figure 9. SEG and abstract state definition

itself, its semantics, how an SEG represents an LLVM IR pro-
gram and the correctness of the inference rules for checking
that an SEG represents an LLVM IR program. We then define
executable code to check if an SEG exported from AProVE in-
deed was constructed by these inference rules. This gives us
very strong guarantees that a termination analysis is correct.

4.1 Formal Definition of an SEG
The definition of an SEG in Isabelle is given in Figure 9. The
formal definition of an abstract state is a direct translation of

the previous textual description: we just store the position
(of type 'p), the mapping from program variables to logi-
cal variables and the knowledge base. For the latter we use
IsaFoR’s type 'lv IA.formula for integer arithmetic formulas
over logical variables of type 'lv.
Next, an SEG (datatype graph') consists of a set of edges,

an assignment from nodes to abstract states and a function
from edges to renamings.

The inductive definition represents_state encodes the rela-
tion between an abstract_state and an ll_state. An abstract
state represents an ll_state if it represents the first frame
in the state. This means that abstract state and frame share
the same position and program variables, and there exists an
assignment v of logical variables to integers which satisfies
the knowledge base of the abstract state and is in sync with
the assignment in the frame.

For example, let s be a concrete state where the first frame
has position (main, bb1, 1) and where the frame assigns the
integer 1 to both program variables %.0 and %tmp. Then s is
represented by the abstract state in node C in Figure 7.

4.2 Evaluation in SEGs
Recall that the key property of SEGs is to simulate infinite
runs of LLVM IR programs via infinite paths in the graphs.
Unfortunately, at this point the paper proofs in [16] do not
specify how execution on SEGs works. As such, in Figure 10
we now provide a formal semantics for evaluation in SEGs.

The transitions of an SEG form a binary relation on states
and are formally defined as inductive set as_step. Here, a state
in the SEG is a pair of a node and an assignment which maps

An Isabelle/HOL Formalization of AProVE’s Termination Method for LLVM IR CPP ’21, January 18–19, 2021, Virtual, Denmark

inductive as_as_step where

∀n lv. stack as1 pv = Some lv −→ 𝜎 pv = v lv

∧ ∀n lv. stack as2 pv = Some lv −→ 𝜏 pv = v' lv

∧ v |= kb as1

∧ v' |= kb as2

∧ ∀lv. v (` lv) = v' lv

=⇒ as_as_step as1 as2 𝜎 𝜏 `

inductive_set as_step where

(n1, n2) ∈ edges seg ∧ renaming_of_edge (n1, n2) = `

∧ as_as_step (as_of_node seg n1) (as_of_node seg n2) 𝜎 𝜏 `

=⇒ ((n1,𝜎), (n2,𝜏)) ∈ as_step seg

Figure 10. Evaluation in SEGs

program variables to integers. In order for ((n1,𝜎), (n2,𝜏)) to
become a transition in as_step the following conditions must
be satisfied: There must be two assignments v and v' from
logical variables to integers; if the stack in the source abstract
state maps a logical variable lv to a program variable pv, then
𝜎 pv = v lv holds, i.e. the same integer value is assigned; the
same holds for v', 𝜏 and the target abstract state; furthermore
v and v' have to satisfy the respective knowledge bases in
the abstract states; finally, the assignment v is obtained from
v' via the renaming ` that is stored for the edge (n1, n2) in
the SEG.

4.3 SEGs Representing LLVM Programs
An SEG represents an LLVM program if for every step in
the LLVM semantics there is a corresponding non-empty
path in the SEG semantics. The inference rules in [16] are
designed in a way that they only permit to construct SEGs,
so that these always represent the input LLVM program.
In this part we are going to formally verify this property.
This task is non-trivial because of three problems: first, the
abstract states in this paper deviate from the definition in
[16]; second, there is no clear definition of the semantics
of SEGs in [16]; and third, even simple inference rules get
complex when spelling out all the details.
Except for the aforementioned problems, most infer-

ence rules can directly be verified formally. In total, we
verify the rules evalInf, genInf, refineInf, condBrInf, brInf,
evalExternalInf, callInf, returnInf, icmpInf and refineInf.
Since we are only interested in verifying an already con-
structed SEG, we just refer to [16] regarding the problem
of how to apply the inference rules for obtaining a suitable
SEG. Here, we focus on showing soundness of the rules itself.
While the formalization covers all rules in full detail, in this
paper we concentrate on a few rules.
The first rule is evalInf. Its purpose is to perform a sym-

bolic evaluation to simulate an assignment with a binary
operation, i.e., x = o1 binop o2. The formal definition is given
in Figure 11 and we will explain this definition in full detail

inductive evalInf where

"find_statement prog (pos as1) = Inr (Instruction (Named x
(Binop binop o1 o2)))
∧ pos as2 = inc_pos (pos as1)
∧ operand_value as1 o1 = Some t1

∧ operand_value as1 o2 = Some t2

∧ 𝜙 = encode_binop binop vn t1 t2

∧ update_as as1 as2 x vn 𝜙

∧ as_of_node seg n1 = as1

∧ as_of_node seg n2 = as2

∧ renaming_of_edge seg (n1,n2) = id

∧ (n1,n2) ∈ edges seg

=⇒ evalInf prog seg n1 n2"

Figure 11. Formal version of inference rule evalInf

for the purpose of giving an idea of the complexity of defin-
ing a simple inference rule with all formal details. In this
inference rule, we assume that node n1 is provided and that
it contains an abstract state as1 which itself points to an as-
signment with a binary operation. The two operands o1 and
o2 (program variables or constants) are converted by operand_

value into terms t1 and t2, respectively, by changing the pro-
gram variables into logical variables. The computation of
the binary operation is encoded via the Isabelle function
encode_binop. It constructs a formula 𝜙 , an equality between
a fresh logical variable vn and the result of the binary op-
eration. This formula is used to construct a new abstract
state as2; this state has to point to the next program position,
the stack of as2 must be exactly like as1, except that now
the program variable x points to the fresh logical variable vn,
and the knowledge base of as2 must be an implication of the
knowledge base of as1 in combination with 𝜙 . Here, the latter
two conditions are enforced via the Isabelle predicate update_

as. Finally, a new node n2 with abstract state as2 can be added
to the SEG and the resulting edge between n1 and n2 must
not use any renaming of variables, which is expressed via
the identity renaming id.

After its definition we then show soundness of the evalInf

rule. To be more precise, we show that whenever a valid
step in the LLVM semantics was made from concrete state
cs1 to cs2, and cs1 is represented by some node n1, then the
successor node n2 of an evalInf-inference represents cs2 and
a transition in the SEG semantics is possible. The precise
statement is given in Figure 12.

We omit the full definitions of the remaining inference
rules and just briefly mention some of the remaining ones.

The rule evalExternalInf is quite similar to evalInf, except
that it is used for assignments via external function calls.
The main difference is that no formula 𝜙 is computed, so
there will be no information about the result of the external
call in the knowledge base of the new node. An example is
given by the edge between node A and node B in Figure 7.

CPP ’21, January 18–19, 2021, Virtual, Denmark Max W. Haslbeck and René Thiemann

lemma evalInf_represents_step:

assumes "evalInf prog seg n1 n2"

and "represents cs1 (as_of_node seg n1)"
and "step prog cs1 = Inr cs2"

shows "represents cs2 (as_of_node seg n2)"
and "((n1,assig_of_state cs1),(n2,assig_of_state cs2))

∈ as_step seg"

Figure 12. Soundness of evalInf

The rules condBrInf and brInf encode jumping into another
basic block. The atomic evaluation of the phi nodes is inte-
grated into these rules.

The rule genInf describes how to reuse nodes by showing
that one node generalizes another one. This rule is used to
obtain finite SEGs, since without it an SEG would most often
result in an infinite tree. It is the only rule where we actually
use the renaming on the edge of an SEG. The renaming
is used to reunite the logical variables used for the same
program variables. Renaming is necessary because different
logical variables may be used for the same program variables.
As an example, consider nodes L and D in Figure 8 that are
connected by the genInf rule. In node L, program variable
%.0 is assigned to v18 and in node D it is assigned to v12.
Therefore the renaming needs to contain the assignment v12
↦→ v18. The conditions of the genInf rule further ensure that
the knowledge base of the abstract state in the first node
implies the knowledge base of the abstract state in the second
node modulo the renaming, so that the second node does in
fact correspond to more concrete states than the first node
does. Note that genInf is the rule which we could not verify
using the definition of SEGs as in [16].

The last rules we mention are the rules for function calls
and returning from a function call. Here, the deviation from
the definition of abstract states becomes problematic. To il-
lustrate the problem, consider a concrete state with frames
f1 : f2 : f3 : . . . where f1 is represented by some ab-
stract state as. If now a return statement is executed, then
the resulting state is roughly f2 : f3 : But since no
information about f2 is stored in as, it will not be possible to
simulate the execution of this return statement in the SEG.

The solution to this problem is to allow shortcuts and prun-
ing in the simulation of an infinite LLVM program execution
as follows: Whenever a function call is made in this infinite
computation, two situations can occur. First, the function
call will return after several execution steps; in this case we
can treat this function call as if it would be the invocation of
some external (terminating) function and wemake a shortcut
from the call to the state when the call has returned. Second,
the function call does not return; in that case we don’t have
to simulate the return statement and just jump into the first
block of the called function and thereby prune all frames
below. In total, whenever there is an internal function call,

lemma SN_as_step_imp_SN_step'_relation:

assumes "seg_represents prog seg"

and "represents c (as_of_node seg n)"
and "SN_on (as_step seg) {(n, assig_of_state c)}"

shows "SN_on (step'_relation prog) {c}"

Figure 13. Soundness of the inference rules

two new nodes must be created in the SEG, one which jumps
into the called function and one which jumps to the position
after the call. The benefit of adding shortcuts is that there
is no longer the demand to simulate any return statement.
Consequently, the rule returnInf for return statements is now
quite simple: the respective node then has no outgoing edge
and the SEG ends in these nodes.

A nice side effect of our treatment of function calls is the
fact that in this way we also support recursive LLVM IR
programs. These programs were explicitly excluded in [16].
We note that the support for the rule callInf is not yet im-
plemented in AProVE and the tested programs in Section 5.3
do not contain function calls.

After the discussion of some concrete inference rules, we
now define a predicate seg_represents to express that for ev-
ery node in the SEG a suitable inference rule has been ap-
plied, and that all successor nodes of the inference rules are
also part of the SEG. With the accompanying lemmas from
all the rules above we then show that if there is an infinite
execution w.r.t. the step' semantics then there exists an infi-
nite execution in the SEG semantics. Therefore if the SEG
is strongly normalizing, then the step' relation is strongly
normalizing, cf. Figure 13. We start by assuming that there is
an infinite chain in the step' semantics. Since we have a SEG
that represents an LLVM programm and we therefore know
that for every transition in the step' semantics, there is at
least one transition in the as_step semantics. This implies an
infinite chain in as_step seg which is a contradiction to the
assumption that as_step seg is strongly normalizing.

4.4 Certificate for the Fact That an SEG Represents
an LLVM Program

We have previously described several inference rules that
permit to construct SEGs. Now we show how to verify that
a given SEG was really constructed w.r.t. the inference rules.
To this end, we require that the certificate contains the graph
structure of the SEG and additionally for every node we need
to know which inference rule was applied, in combination
with further information on how it was applied. Such an
example certificate was already given in a graphical form in
Figures 7 and 8. For example, at node I we see that evalInf
was applied and the new logical variable was named v17.
Another example is node L, which applies genInf, and here
the renaming of variables is provided.

An Isabelle/HOL Formalization of AProVE’s Termination Method for LLVM IR CPP ’21, January 18–19, 2021, Virtual, Denmark

lemma check_eval_evalInf:

assumes "isOK (check_eval prog seg n1 n2 vn)"
shows "evalInf prog seg n1 n2"

Figure 14. Soundness of the checker for evalInf

lemma check_seg_represents:

assumes "isOK (check_seg_represents prog seg)"
shows "seg_represents prog seg"

Figure 15. Soundness of the checker of SEGs

Hence, we define executable functions in Isabelle which
check for a given node with the help of the auxiliary infor-
mation, whether indeed the annotated inference rule was
correctly applied. The structure of the soundness statements
of these checkers is always the same and an example is given
in Figure 14 for checking an application of evalInf. The state-
ments express that if the checker accepts, then the property
is guaranteed to hold. Here, isOK just checks whether the
result of the checker, a sum-type, is a right (Inr) value, and
not an error message (Inl).
Note that several of these checkers internally rely upon

the verified SMT solver of IsaFoR/CeTA [3]. The reason is that
many inference rules require that a certain linear arithmetic
formula implies another arithmetic formula. For example, for
evalInfwemust check validity of𝜓1∧𝜙 −→ 𝜓2 where𝜓1 and
𝜓2 are the knowledge bases of nodes n1 and n2, respectively
and 𝜙 is the formula of the inference rule.

Next, we define an executable function check_seg_represents

which calls the corresponding check functions for every node
in the graph. Figure 15 shows the overall soundness of the
checker for SEGs.

4.5 Converting SEGs to ITSs
At this point, we already showed how to check if an SEG
represents an LLVM IR program, and that in the positive case
termination of the SEG implies termination of the program.
So, it remains to prove termination of an SEG, which is
done by converting it to an ITS, and then use the existing
infrastructure to show termination of the ITS in a certified
way [4]. The only missing step is hence the verification of
the translation of SEGs to ITSs. At this point it becomes
crucial that SEGs have an execution semantics on their own,
so that a verification of the translation is possible without
having to relate to the LLVM IR semantics or the inference
rules on how to construct an SEG.
The ITS model in [4] consists of a graph with edges an-

notated with integer arithmetic formulas. Variables in these
formulas are either so called pre-, post- or intermediate vari-
ables.
For conversion to an ITS we only need the knowledge

bases in the abstract states of an SEG and the renamings on

lemma lts_termination_SN_as_step:

assumes "IA.lts_termination

(lts_of_graph seg {loc_of_node n})"
shows "SN_on (as_step seg) {(n, v)}"

Figure 16. Soundness of the translation of SEGs to ITSs

lemma lts_renaming_termination:

assumes "lts_termination LA"

and "renamed_lts r LA LI"

shows "lts_termination LI"

Figure 17. Soundness of renaming elements within ITSs

the edges. To be more precise, the conversion turns the logi-
cal variables of the source state into pre-variables, the target
state variables become post variables and all other variables
in the knowledge bases become intermediate variables. We
define a function lts_of_graph in Isabelle to perform this con-
version and prove its soundness in Figure 16. Note that in
the formalization, ITSs are available in a more general form,
namely as labeled transition systems (LTSs), so many of the
names in this section have a prefix lts instead of its. Some-
times the prefix IA. is used to refer the particular instance of
LTSs that are ITSs.

There is a problem at this point, namely that our function
lts_of_graphwhich converts an SEG to an ITS reuses the same
logical variable names as the SEG, whereas AProVE renames
variables to a standardized naming scheme when creating
any ITS. Futhermore, the lemma lts_termination_SN_as_step

depends on the same variable names in the SEG and ITS and
AProVE’s methods to prove termination of an ITS depend on
the standardized naming scheme. We need to show that the
termination of the AProVE ITS implies the termination of
the Isabelle ITS and we solve this problem via a predicate on
two ITSs called renamed_lts. It takes two ITSs and a variable
renaming, and checks whether the one ITS is obtained from
the other by the renaming and by testing on equivalent
formulas. By checking for equivalence instead of equality of
the formulas we also take care of the fact the order of clauses
in the Isabelle ITS and the AProVE ITS can be different. We
extended AProVE to generate a renaming when constructing
the ITS from the SEG. It then exports the ITS LA and the
renaming and we then check if the ITS LI constructed by
lts_of_graph seg is a renamed_lts.

Figure 17 shows that if LA terminates, then LI terminates.
Consequently, it suffices to prove termination of the ITS LA
that has been constructed by AProVE to ensure termination
of seg.

CPP ’21, January 18–19, 2021, Virtual, Denmark Max W. Haslbeck and René Thiemann

lemma llvm_check_termination:

assumes "isOK (llvm_check_termination prog fn ll_proof)"
and "initial_llvm_frame prog fn fr" and "frames s = [fr]"

shows "SN_on (step'_relation prog) {s}"

Figure 18. Soundness of Certifier

<?xml version ="1.0" encoding ="UTF -8" standalone ="no"?>
<?xml -stylesheet type="text/xsl" href=" cpfHTML.xsl"?>
<certificationProblem

xmlns:xsi="http ://www.w3.org /2001/ XMLSchema -instance"
xsi:noNamespaceSchemaLocation ="cpf.xsd">
<input ><llvm >

<function ><name >main </name ></function >
<llvmprog >

define i32 @main() {
...

</llvmprog >
</llvm ></input >
<cpfVersion >2.1 </ cpfVersion >
<proof ><llvmTerminationProof >

<seg >...</seg >
<lts >...</lts >
<renamings >...</ renamings >
<ltsTerminationProof >...</ ltsTerminationProof >

</llvmTerminationProof ></proof >
</certificationProblem >

Figure 19. CPF example

5 The Verified Certifier and Its Evaluation
5.1 Assembling the Certifier for LLVM IR

Termination Proofs
A complete proof of termination for an LLVM IR function
consists of an SEG, an ITS, a renaming of the ITS and a
termination proof for the ITS, and these components are
combined in a suitable datatype to represent LLVM termi-
nation proofs. Such a proof can be passed to our verified
certifier, which is defined as the executable Isabelle function
llvm_check_termination. In addition to the proof, the checker
takes the input LLVM program prog and a function name fn,
and checks that all components have been constructed cor-
rectly. Internally, it invokes the various certifiers for check-
ing the correct application of each of the transformations, as
well as the already existing checker for termination proofs
of ITSs.

Soundness of the certifier is stated in Figure 18: if the cer-
tifier llvm_check_termination is successful, then the function
fn in prog terminates for all inputs. More precisely, termina-
tion is ensured for all states s that correspond to exactly one
function call of fn with arbitrary inputs. Here, the predicate
initial_llvm_frame prog fn fr encodes that a frame fr is a
proper initial frame of the function, i.e. the parameters are
initialized and the position is at the start of the function.
Moreover, the state s must contain exactly one frame fr –
otherwise a lower frame could, for example, contain a call
to a non-terminating function, so that it would be wrong to
conclude termination of the step'_relation on such an input.

Our new certifier for termination of LLVM IR code has
been integrated into the IsaFoR library. In this library, there
are already several certifiers for other properties, and they all
use the common CPF format for encoding proofs. Hence, we
extend CPF to also cover LLVM termination proofs. As seen
in Figure 19, a CPF proof is an XML file consisting of an input
problem and a corresponding proof. The <input>-element
contains the original LLVM IR code and the <proof>-element
contains all necessary proof parts. Parsing XML is already
part of the IsaFoR library and except for the LLVM IR input
everything is parsed by exported code from Isabelle. For
parsing the LLVM IR input we rely on the llvm-hs Haskell
library.4 This is, right now, the only part of our code which
is not generated by Isabelle’s code generator.

5.2 AProVE
AProVE is already able to analyze termination of LLVM pro-
grams by conversion to SEGs and then to ITSs. It also features
the ability to create proofs in the CPF format, for example
for term rewrite systems or ITSs. For this work, we extend
AProVE to also produce certificates for LLVM IR termination
proofs (like the one in Figure 19). This involves some adjust-
ments in the structure of the proof objects that are internally
stored by AProVE. The reason is that some of the information
that is required in the certificates were originally discarded
by AProVE. After inserting the additional information we
add a CPF export for LLVM termination proofs. It is based on
a newly written CPF output for the SEG, for the conversion
to an ITS and the renaming, as well as on the existing CPF
output for ITS termination proofs.

5.3 Experiments
We run AProVE and our exported Haskell code on examples
from the C_Integer category in the Termination competition
database.5 The programs in this category are written in C
and do not contain memory access commands. For the actual
termination, analyzing tools must follow the C standard with
the only difference that the int type is unbounded.

Our first step is to compile the programs of this category
fromC to LLVM. If we simply compile these C programs with
clang and minimal optimizations (command line parameter
-O1), all programs are simplified to a main function that
consists of single command: ret 0. This is due to the fact
that the C standard allows implementations to assume that
while loops without side effects (like memory access or IO)
terminate [10, Section 6.8.5].
For this reason we first run clang without any optimiza-

tions. We then need to run the optimizer with one optimiza-
tion pass: mem2reg. The reason for this is if clang is run
without any optimizations on C code, passing parameters to
functions is, for example, implemented with passing pointers

4https://github.com/llvm-hs/llvm-hs
5http://termination-portal.org/wiki/TPDB

https://github.com/llvm-hs/llvm-hs
http://termination-portal.org/wiki/TPDB

An Isabelle/HOL Formalization of AProVE’s Termination Method for LLVM IR CPP ’21, January 18–19, 2021, Virtual, Denmark

Configuration AProVE timeout AProVE fail AProVE success certifier timeout certifier fail certifier success

certified version 110 112 102 0 0 102
only ITS 0 23 311 17 24 270

Figure 20. Running AProVE and certifier on C_Integer programs

in memory. mem2reg then rewrites these memory accesses
to register accesses, which results in programs that fall into
our syntactic fragment of LLVM IR.
For our experiments we consider two configurations of

AProVE. The full version is the version that has been used
in the latest termination competition. The certified version
of AProVE differs from the full version by restricting the
search for LLVM termination proofs to the shape that we
described in this paper – the full version also tries alternative
approaches to conclude termination, e.g., by using other back
ends, which are not supported by our certifier. We run both
configurations of AProVE and the certifier with a 5 minute
timeout respectively. As hardware we use a standard iMac
with a 4.2 GHz Quad-Core Intel Core i7 processor and 32GB
of RAM.

The full version is able to generate termination proofs for
216 out of the 334 programs in the C_Integer category, and
the certified version finds 102 proofs. Although the certified
version is clearly less powerful – it solves roughly 50% of
the examples in comparison to the full version – it has the
advantage that all 102 proofs have been certified by our
certifier.
More detailed experimental data on the certified version

is given in Figure 20. There we additionally added a configu-
ration only ITS. This configuration invokes AProVE in a way
that it just has to convert a given LLVM IR program into an
ITS without proving termination of the latter. Moreover, the
certifier then just needs to check that the construction of the
ITS has been sound.

Since AProVE never times out when just constructing an
ITS, it is obvious that all time outs of the certified version
appear during the attempt to find a termination proof for the
ITS. The 23 failures during the construction of ITSs come
from programs which use non-linear arithmetic expressions,
for which there is no CPF export available. Note that AProVE
is able to generate 311 ITSs, and in 270 cases our certifier
can validate that their termination implies termination of
the LLVM IR programs. However, for certain large input
the certifier times out. The time outs always come from the
validity checker for linear integer arithmetic. This means
that all the used inferences may be valid but we cannot
check them in time. A more efficient validity checker for
linear integer arithmetic in Isabelle would be needed.6 For

6Or, like in this paper, we use an external tool to generate a proof of the
validity of an integer arithmetic formula and then only check that with a
certifier.

24 certificates our certifier finds errors within the certificate.
It either finds a linear arithmetic formula that is not valid or
it finds an error where the assignment of phi nodes when
branching is not done correctly. We are not yet sure where
these error arise exactly but we suspect that at one point
AProVE does not properly keep track of the logical variables
it newly creates and assigns. Finally note that the certified
version of AProVE fails 112 times. In these cases AProVE
can show termination, but fails during generation of the
certification. The reason is that the internal ITS termination
prover sometimes applies methods for which there is no CPF
export available.
The full experimental data is available at our website for

supplementary material.7 This includes the C source files,
the corresponding LLVM IR modules, the generated CPF files
and the generated Haskell code.

6 Conclusion and Future Work
We have developed a verified certifier for checking termina-
tion proofs of LLVM IR code. Using Isabelle we have formal-
ized results regarding the semantics of the LLVM IR, formally
specified the SEG, linked the termination of LLVM IR code
with the termination of the corresponding SEG and linked
the termination of the SEG with the termination of the cor-
responding ITS. We developed and verified algorithms to
check the correspondence between LLVM IR code, SEGs and
ITSs. We used Isabelle’s code export feature to generate an
executable certifier in Haskell. We then extended AProVE
to generate certificates that can be checked by the Haskell
certifier. We successfully tested AProVE and our certifier on
a test suite of programs used in a termination competition.

We plan to extend the LLVM IR semantics in Isabelle with
a proper memory model and to extend our certifier to also
handle proofs of memory safety. Ströder et al. already de-
scribed how an SEG can be used to show memory safety [16]
and Zhao and Lammich both define a memory model for
LLVM IR in a theorem prover [11, 18]. To properly handle
LLVM IR code, we also need to extend our semantics with
bit vector arithmetic instead of unbounded integers. Hensel
et al. showed how to use the SEG to handle termination of
actual LLVM IR code with bit vector semantics [9]. There, the
semantics of the SEG still use unbounded integers. Possible
overflows are handled by branching in the SEG and adding
constraints in the knowledge bases of the corresponding
abstract states.
7http://cl-informatik.uibk.ac.at/isafor/experiments/llvm/cpp2021/

http://cl-informatik.uibk.ac.at/isafor/experiments/llvm/cpp2021/

CPP ’21, January 18–19, 2021, Virtual, Denmark Max W. Haslbeck and René Thiemann

Independently from work on LLVM IR semantics and the
SEG, improvements to the ITS back endwould beworthwhile.
The ITS back end uses an incremental Simplex algorithm to
check validity of linear integer arithmetic formulas [3]. Possi-
ble extensions would be to handle non-linear arithmetic, bit
vector arithmetic or optimizations of the existing algorithm
to speed up the certifier. Furthermore, not all techniques
used by AProVE to show termination of an ITS are formal-
ized in IsaFoR and can be certified. Properly implementing
these termination techniques in AProVE and the IsaFoR li-
brary would automatically lead to more certified termination
proofs for LLVM IR code, as the experiments in Section 5.3
have shown.

Acknowledgments
This research was supported by the Austrian Science Fund
(FWF) project Y757. We thank the development team of
AProVE at RWTH Aachen especially Jera Hensel for help-
ing us integrate our code within AProVE. We thank Ralph
Bottesch for proofreading the drafts of this paper. We also
thank the reviewers for their helpful suggestions.

References
[1] 2019. LLVM Language Reference Manual (Version 9.0.0).

https://releases.llvm.org/9.0.0/docs/LangRef.html (Archive
link: https://web.archive.org/web/20191228071421/https:
//releases.llvm.org/9.0.0/docs/LangRef.html). Accessed: 2020-
09-01.

[2] Dirk Beyer. 2020. Advances in Automatic Software Verification: SV-
COMP 2020. In Tools and Algorithms for the Construction and Analysis
of Systems, Armin Biere and David Parker (Eds.). Springer International
Publishing, Cham, 347–367. https://doi.org/10.1007/978-3-030-45237-
7_21

[3] Ralph Bottesch, Max W. Haslbeck, Alban Reynaud, and René Thie-
mann. 2020. Verifying a Solver for Linear Mixed Integer Arithmetic in
Isabelle/HOL. In NASA Formal Methods, Ritchie Lee, Susmit Jha, and
Anastasia Mavridou (Eds.). Springer International Publishing, Cham,
233–250. https://doi.org/10.1007/978-3-030-55754-6_14

[4] Marc Brockschmidt, Sebastiaan J. C. Joosten, René Thiemann, and
Akihisa Yamada. 2017. Certifying Safety and Termination Proofs
for Integer Transition Systems. In Automated Deduction – CADE 26,
Leonardo de Moura (Ed.). Springer International Publishing, Cham,
454–471. https://doi.org/10.1007/978-3-319-63046-5_28

[5] Evelyne Contejean, Pierre Courtieu, Julien Forest, Olivier Pons, and
Xavier Urbain. 2007. Certification of Automated Termination Proofs.
In Frontiers of Combining Systems, Boris Konev and Frank Wolter
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 148–162. https:
//doi.org/10.1007/978-3-540-74621-8_10

[6] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. 1991. Efficiently Computing Static Single Assign-
ment Form and the Control Dependence Graph. ACM Trans. Program.

Lang. Syst. 13, 4 (Oct. 1991), 451–490. https://doi.org/10.1145/115372.
115320

[7] Jürgen Giesl, Cornelius Aschermann, Marc Brockschmidt, Fabian
Emmes, Florian Frohn, Carsten Fuhs, Jera Hensel, Carsten Otto, Martin
Plücker, Peter Schneider-Kamp, Thomas Ströder, Stephanie Swiderski,
and René Thiemann. 2016. Analyzing Program Termination and Com-
plexity Automatically with AProVE. Journal of Automated Reasoning
58, 1 (Oct. 2016), 3–31. https://doi.org/10.1007/s10817-016-9388-y

[8] Jürgen Giesl, Albert Rubio, Christian Sternagel, Johannes Waldmann,
and Akihisa Yamada. 2019. The Termination and Complexity Com-
petition. In Tools and Algorithms for the Construction and Analysis of
Systems, Dirk Beyer, Marieke Huisman, Fabrice Kordon, and Bern-
hard Steffen (Eds.). Springer International Publishing, Cham, 156–166.
https://doi.org/10.1007/978-3-030-17502-3_10

[9] Jera Hensel, Jürgen Giesl, Florian Frohn, and Thomas Ströder. 2018.
Termination and complexity analysis for programs with bitvector
arithmetic by symbolic execution. Journal of Logical and Algebraic
Methods in Programming 97 (2018), 105 – 130. https://doi.org/10.1016/
j.jlamp.2018.02.004

[10] ISO/IEC 9899:2018 2018. Information technology — Programming lan-
guages — C. Standard. International Organization for Standardization,
Geneva, CH.

[11] Peter Lammich. 2020. Efficient Verified Implementation of Introsort
and Pdqsort. In Automated Reasoning, Nicolas Peltier and Viorica
Sofronie-Stokkermans (Eds.). Springer International Publishing, Cham,
307–323. https://doi.org/10.1007/978-3-030-51054-1_18

[12] C. Lattner and V. Adve. 2004. LLVM: a compilation framework for
lifelong program analysis transformation. In International Symposium
on Code Generation and Optimization, 2004. CGO 2004. 75–86. https:
//doi.org/10.1109/CGO.2004.1281665

[13] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. 2002.
Isabelle/HOL – A Proof Assistant for Higher-Order Logic. Vol. 2283.
https://doi.org/10.1007/3-540-45949-9

[14] Christian Sternagel and René Thiemann. 2014. Certification Mon-
ads. Archive of Formal Proofs (Oct. 2014). http://isa-afp.org/entries/
Certification_Monads.html, Formal proof development.

[15] Thomas Ströder, Jürgen Giesl, Marc Brockschmidt, Florian Frohn,
Carsten Fuhs, Jera Hensel, and Peter Schneider-Kamp. 2014. Proving
Termination and Memory Safety for Programs with Pointer Arith-
metic. In Automated Reasoning, Stéphane Demri, Deepak Kapur, and
ChristophWeidenbach (Eds.). Springer International Publishing, Cham,
208–223. https://doi.org/10.1007/978-3-319-08587-6_15

[16] Thomas Ströder, Jürgen Giesl, Marc Brockschmidt, Florian Frohn,
Carsten Fuhs, Jera Hensel, Peter Schneider-Kamp, and Cornelius As-
chermann. 2017. Automatically proving termination and memory
safety for programs with pointer arithmetic. Journal of Automated Rea-
soning 58, 1 (2017), 33–65. https://doi.org/10.1007/s10817-016-9389-x

[17] René Thiemann and Christian Sternagel. 2009. Certification of Termi-
nation Proofs Using CeTA. In Theorem Proving in Higher Order Logics,
Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wen-
zel (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 452–468.
https://doi.org/10.1007/978-3-642-03359-9_31

[18] Jianzhou Zhao, Santosh Nagarakatte, Milo M.K. Martin, and Steve
Zdancewic. 2012. Formalizing the LLVM Intermediate Representation
for Verified Program Transformations. SIGPLAN Not. 47, 1 (Jan. 2012),
427–440. https://doi.org/10.1145/2103621.2103709

https://releases.llvm.org/9.0.0/docs/LangRef.html
https://web.archive.org/web/20191228071421/https://releases.llvm.org/9.0.0/docs/LangRef.html
https://web.archive.org/web/20191228071421/https://releases.llvm.org/9.0.0/docs/LangRef.html
https://doi.org/10.1007/978-3-030-45237-7_21
https://doi.org/10.1007/978-3-030-45237-7_21
https://doi.org/10.1007/978-3-030-55754-6_14
https://doi.org/10.1007/978-3-319-63046-5_28
https://doi.org/10.1007/978-3-540-74621-8_10
https://doi.org/10.1007/978-3-540-74621-8_10
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/115372.115320
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/978-3-030-17502-3_10
https://doi.org/10.1016/j.jlamp.2018.02.004
https://doi.org/10.1016/j.jlamp.2018.02.004
https://doi.org/10.1007/978-3-030-51054-1_18
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1007/3-540-45949-9
http://isa-afp.org/entries/Certification_Monads.html
http://isa-afp.org/entries/Certification_Monads.html
https://doi.org/10.1007/978-3-319-08587-6_15
https://doi.org/10.1007/s10817-016-9389-x
https://doi.org/10.1007/978-3-642-03359-9_31
https://doi.org/10.1145/2103621.2103709

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Isabelle/HOL
	2.2 LLVM

	3 LLVM Semantics in Isabelle/HOL
	3.1 LLVM Syntax
	3.2 Small Step Semantics

	4 Symbolic Execution Graph
	4.1 Formal Definition of an SEG
	4.2 Evaluation in SEGs
	4.3 SEGs Representing LLVM Programs
	4.4 Certificate for the Fact That an SEG Represents an LLVM Program
	4.5 Converting SEGs to ITSs

	5 The Verified Certifier and Its Evaluation
	5.1 Assembling the Certifier for LLVM IR Termination Proofs
	5.2 AProVE
	5.3 Experiments

	6 Conclusion and Future Work
	Acknowledgments
	References

