
Formalizing Jordan Normal Forms in Isabelle/HOL

René Thiemann Akihisa Yamada
University of Innsbruck, Austria

{rene.thiemann, akihisa.yamada}@uibk.ac.at

Abstract
In automated complexity analysis of term rewriting, estimating the
growth rate of the values in the k-th power of a matrixA – for fixed
A and increasing k – is of fundamental interest. This growth rate
can be exactly characterized viaA’s Jordan normal form (JNF). We
formalize this result in our library IsaFoR and our certifier CeTA,
and thereby improve the support for certifying polynomial bounds
derived by (untrusted) complexity analysis tools.

To this end, we develop a new library for matrices that allows us
to conveniently work with block matrices. Besides the mentioned
complexity result, we formalize Gram-Schmidt’s orthogonalization
algorithm and the Schur decomposition in order to prove existence
of JNFs. We also provide a uniqueness result for JNFs which allows
us to compute Jordan blocks for individual eigenvalues. In order to
determine eigenvalues automatically, we moreover formalize Yun’s
square-free factorization algorithm.

Categories and Subject Descriptors F.4.1 [Mathematical Logic]:
Mechanical theorem proving; G.1.3 [Numerical Linear Algebra]

Keywords matrix theory, Jordan normal form, Isabelle/HOL,
complexity

1. Introduction
CeTA [25] is a certifier for complexity proofs of term rewrite sys-
tems; it takes an untrusted, automatically generated proof from
complexity analyzers such as AProVE, CaT, or TCT [1, 9, 29], and
tries to validate it. There are three possible outcomes: (1) the proof
could be validated, (2) the proof was rejected because it indeed was
faulty, and (3) the proof was rejected because at some point in the
analysis CeTA applied too coarse estimations or imposed too se-
vere preconditions, so that the desired complexity bound could not
be validated.

This paper aims at reducing the number of rejected proofs of the
third kind, by improving the support for matrix interpretations [8],
an important technique for complexity analysis. For instance, in the
termination competition 2015 [10], roughly 40 % of the machine
readable complexity proofs contain matrix interpretations.

Given a matrix interpretation, one can provide a complexity
bound by estimating the growth rate of the matrix Ak, where A is
determined by the interpretation. If the values inAk are bounded by

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CONF ’yy, Month d–d, 20yy, City, ST, Country.
Copyright c© 20yy ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

O(kN) – we write as Ak ∈ O(kN) in the sequel – then O(kN+1)
is a valid bound for the runtime of the rewrite system.

The connection between the growth rate of Ak and the com-
plexity of the rewrite system is already covered in previous papers
[2, 21]. On the other hand, for estimating the growth rate ofAk, the
corresponding version of CeTA is limited: it is based on the initiat-
ing result by Moser et al. [16], where only upper-triangular matrices
are allowed, and the degree of the polynomial depends only on the
dimension of the matrix.

Using the spectral radius theory, Neurauter et al. [17] improved
the result for arbitrary matrices, and the degree of polynomial
bounds to be computed from the maximum multiplicity of eigen-
values of (complex) norm 1, if no eigenvalue has a larger norm.

Nevertheless, bounds derived by these results are not tight. For
instance, consider the matrix

A =

1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1


The old version of CeTA accepts only

Ak ∈ O(k3)

or higher as a complexity bound. This bound would not improve by
using [17], since the only eigenvalue of A is 1 and its multiplicity
is four, yielding the same bound.

In this paper, we derive tight bounds via Jordan normal forms
(JNFs) [13]. For the above matrix A, its JNF is computed as
A = PJP−1, where P is some invertible matrix and

J =

1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1


A closed formula is known for k-th powers of JNFs; in this case,

Jk =


1k

(
k
1

)
1k−1 0 0

0 1k 0 0
0 0 1k 0
0 0 0 1k

 =

1 k 0 0
0 1 0 0
0 0 1 0
0 0 0 1


whose elements are clearly bounded by k. Since Ak = PJkP−1,
we can derive the following tight bound:

Ak ∈ O(k)

There are other approaches for tight bounds. Namely, Wald-
mann [27] employs weighted automata, which is later shown to be
tight [15]; and Middeldorp et al. [15] also derive tight bounds by
extending [17] using minimal polynomials.

Nevertheless, our deviation to JNFs is easily justified: We ini-
tially tried to follow the approach of [15, 17], which works via
Cayley-Hamilton theorem, linear recurrence equations, and results
for growth rates of linear recurrence equations. When looking for

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

CPP’16, January 18–19, 2016, St. Petersburg, FL, USA
ACM. 978-1-4503-4127-1/16/01...$15.00
http://dx.doi.org/10.1145/2854065.2854073

88

paper proofs for growth rates of recurrence equations, however, we
stumbled upon proofs which converts linear recurrence equations
into matrices, and then use results which are based on JNFs. Hence,
the whole connection to linear recurrence equations in [17] can be
seen as a detour.

Thus we choose to formalize the theory around JNFs and its
connection to polynomial complexity bounds in the Isabelle proof
assistant [18]. Afterwards, we integrate them in IsaFoR and CeTA,
where the former contains the soundness proof of the latter. As a
result, the new version of CeTA now accepts the tight Ak ∈ O(k)
(and higher) for the above example, and a large variety of theorems
about polynomials, matrices, JNFs, etc., constituting more than
20,000 lines of Isabelle code, become available to every Isabelle
user.

The whole formalization (IsaFoR version 2.23) and details on
the experiments are available at

http://cl-informatik.uibk.ac.at/software/ceta/
experiments/jnf/

where our contribution consists of all theories in the directory
thys/Matrix. A preliminary version of the formalization is also
available in the archive of formal proofs (AFP) [26].

This paper is structured in the following way (we indicate the
most important theory file for each section in the section heading).

• We motivate and describe a new library for matrices (Sect. 3).
• We formalize JNFs and provide explicit complexity bounds for

matrices in this form. These bounds allow us to formalize a
main result, that for complex matrices (which always possess
JNFs), we have polynomial growth of Ak if and only if the
spectral radius is at most one (Sect. 4).
• To formalize that every complex matrix has a JNF, we provide

and prove the correctness of an algorithm to convert a matrix
into JNF (taking the linearly factored characteristic polynomial
as input). To this end, we formalize the Gram-Schmidt algo-
rithm for creating orthogonal bases (Sect. 5), the Schur de-
composition which converts a matrix into an upper-triangular
form (Sect. 6), and an algorithm which computes a JNF of an
upper-triangular matrix by means of elementary row and col-
umn transformations (Sect. 7).1

• In order to factor the characteristic polynomial, we formalize
Yun’s algorithm for square-free factorization [28] and combine
it with explicit formulas for low-degree polynomials2 and with
heuristics that guess roots (Sect. 8).
• We further illustrate how all the methods have been combined

in a single algorithm for validating growth rates of matrices,
and discuss initial problems when executing it. When the exact
growth rate of Ak is polynomial, say Θ(kN), the algorithm ac-
cepts the sharpO(kN) as an upper bound, if A has no complex
eigenvalue, or if N differs from the dimension of the matrix by
at most three (Sect. 9).
• We finally evaluate our experiments and discuss future work

(Sect. 10).

2. Preliminaries
We assume basic knowledge of Isabelle and linear algebras.

1 We chose this approach over the proofs via generalized eigenspaces, as the
former works incrementally: we started by supporting triangular matrices,
and then later on added the support for arbitrary matrices.
2 We only use the formula for degree-two polynomials, due to a limitation
in Isabelle’s implementation of irrational numbers.

2.1 IsaFoR and CeTA

IsaFoR is the Isabelle Formalization of Rewriting. It contains var-
ious theorems about rewriting, including several techniques for
proving confluence, complexity, and termination of rewrite sys-
tems. These techniques are combined to yield a certification algo-
rithm for these properties within Isabelle: CeTA. It inputs a rewrite
system, a property, and an untrusted proof, and it either accepts the
proof, or rejects the proof with some detailed error message. The
soundness of CeTA is formally proven within Isabelle; hence, if
CeTA accepts a proof, then the rewrite system satisfies the property.

Although completely specified in Isabelle, usually CeTA is in-
voked outside Isabelle, as a compiled Haskell code generated by
Isabelle’s code generator. This approach has some consequences:
CeTA is quite fast and it can be used without having Isabelle in-
stalled. Regarding the formalization, the most important conse-
quence is, that no change can be made to CeTA after it has been
generated. For instance, it is impossible to create a datatype on the
fly depending on the input.

2.2 Linear Algebra
Whereas IsaFoR is mainly about term rewriting, this paper is
mostly on linear algebra. We recapitulate some basic notions and
notations.

In mathematical expressions (not in Isabelle code) we follow
standard conventions, such as considering a one-dimensional vec-
tor as a scalar and a one-column matrix as a vector. For a complex
matrix A, we denote its transpose by AT and conjugate transpose
(Hermitian transpose) by AH. Hence, vHw denotes the dot prod-
uct of vectors v and w, where a denotes the complex conjugate of
a ∈ C and extended naturally to complex vectors. Two complex
vectors v and w are orthogonal if vHw = 0.

DEFINITION 1. An eigenvalue of a matrixA is a scalar λ such that
there exists a non-zero vector v called an eigenvector satisfying
Av = λv. The characteristic polynomial of a matrixA is det(xI−
A), where I is the identity matrix and det the determinant.

It is well known that the eigenvalues are precisely the roots of
the characteristic polynomial.

DEFINITION 2 (Similarity). Two n×nmatricesA andB are sim-
ilar if there exists an invertible matrix P such that A = PBP−1.

If A = PBP−1, then clearly Ak = PBkP−1. Moreover,
two similar matrices have the same characteristic polynomial and
hence, the same eigenvalues.

DEFINITION 3 (Jordan Normal Form). A square matrix A is in
JNF if it is a block-diagonal matrix of the form

A =


J1

. . .

Jp


where each Ji, called a Jordan block, is a square matrix of the
following form:

Ji =


λ 1

λ . . .
. . . 1

λ


for some λ. A square matrix A has a JNF if there exists a matrix B
in JNF which is similar to A. Blank parts in a matrix are assumed
to be zero.

From the definition it is obvious that each matrix in JNF can be
represented by a list of pairs (n, λ) where every pair represents a

89

Jordan block of size n with λ on its diagonal. Moreover, the λ’s on
the diagonal are exactly the eigenvalues of the matrix.

3. A New Matrix Library
3.1 Motivation
When starting our formalization, there was the design question of
what matrix/vector representation the whole development should
be based on.

On the one hand, there is the HOL multivariate analysis (HMA)
representation by Harrison [11], where a vector v ∈ Rn is rep-
resented as a function of type α ⇒ R where α is a type with n
elements, and similarly a matrix A ∈ Rn×m is represented by a
type α ⇒ β ⇒ R where β is a type with m elements. A large
library around this representation is available, both in the Isabelle
distribution and in the AFP. Unfortunately, however, HMA turns
out not to be a good choice for our development, for two reasons:

• First, due to the encoding of dimensions as types, at the moment
of invoking the code generator for CeTA we would need to
have created all types for every dimension that we require later
on when checking generated complexity proofs. Although the
current complexity tools use matrices of dimensions at most
10, it is clearly not an elegant approach to generate 10 variants
of code and fail whenever a tool generates proofs with larger
matrices.
• Second, since a JNF usually contains Jordan blocks of different

sizes, we would not be able to express in HMA the set of the
Jordan blocks. For instance, it is impossible to even specify
the type of a function which takes a list of Jordan blocks and
composes a JNF from it. If the input list is of type (α ⇒ α ⇒
R) list, then all blocks must have the same dimension. Moreover
the output type of the function clearly depends on the input
term, which is not expressible in Isabelle/HOL as it does not
feature dependent types.

On the other hand, there is another representation available in
the AFP [20], which directly represents vectors as lists, and matri-
ces as lists of lists. Here, there is no problem with code generation;
however, it is a bit too low-level in our view, and there are hardly
any available results except for basic matrix operations. Moreover,
when performing proofs with this representation of matrices, it can
easily happen that the simplification rules for lists interfere with the
preferred reasoning for matrices.

3.2 New Matrix Representation (Matrix)
As a solution, we provide a new matrix representation which is as
abstract as the HMA representation, but is flexible for dimensions.
We represent a vector (v0, . . . , vn−1) as a pair (n, v) of the dimen-
sion n and the characteristic function v, i. e., v i = vi. Similarly, n-
rowm-column matrixA is expressed as a triple (n,m, a) using the
characteristic function a of A. We collect such represented vectors
and matrices as types α vec and αmat, respectively, where α is the
element type. More precisely, α vec is a subtype of N × (N ⇒ α)
where (n, v) :: α vec enforces the invariant that v i is undefined3

for i ≥ n. Similarly, αmat is a subtype of N×N×(N⇒ N⇒ α).
As a consequence, two vectors/matrices are equal iff they have the

3 Whereas in principle this can be expressed using Isabelle’s special con-
stant undefined, we expressed it in a way that allows a list or array-based
implementation of vectors and matrices without checking indices when ac-
cessing elements. For instance, to implement the function for taking the
i-th element of an n-dimensional vector which might be represented as
(n, [a1, . . . , an]), we can just take the i-th element of the list instead of
having to compute “if i < n then ai else undefined”.

same dimension and the characteristic functions coincide inside the
dimension.

The constructors for vectors and matrices are vec and mat,
which take dimensions and characteristic functions and deliver
vectors/matrices. Internally, we use the lifting and transfer package
[12] to work with the subtypes and to define primitive operations
such as the constructors or selectors for the dimensions, etc.

Based on these primitive operations, we define the basic opera-
tions, such as addition ⊕v /⊕m, negation 	v /	m, scalar multipli-
cation �v /�m, dot product •, and matrix multiplication ⊗m.

Our new matrix library has several advantages.

• It is logically similar to HMA in the sense that vectors/matrices
are represented by their characteristic functions. This allows to
easily adapt existing proofs from HMA for our setting. Indeed,
we could adapt large parts of the HMA formalization for deter-
minants without much effort.4

• The reasoning can be made on an abstract level and is not scat-
tered with low-level implementation details as when working
directly with lists of lists as in [20].
• The implementation, i. e., code equations for matrices can be

freely chosen. For instance, one might take a lists-of-lists im-
plementation, an implementation for sparse matrices, and so
on. The current formalization provides an implementation via
immutable arrays, namely Isabelle’s IArray library with the
Haskell serialization provided in [5].
• The type for matrices contains only the type of elements, but

not dimensions. Hence, it is suitable for dealing with block
matrices which is required for JNFs. On the other hand, one
has to pay for this flexibility by working with explicit carrier
sets which ensure that matrix operations are applied only on
sensible arguments, i. e., where the dimensions fit together.

Due to the last point, we could provide support for block matri-
ces. The basic functionality split_block allows to split a matrix[

A B
C D

]
into four smaller matrices A, B, C and D, where the sizes are
determined by a given row index and column index. The opposite
operation, combining four matrices into one matrix, is formalized
as follows, where dimr (resp. dimc) returns the row dimension (resp.
column dimension) of a matrix.

four_block_mat A B C D ≡
let nra = dimr A; nrd = dimr D; nca = dimc A; ncd = dimc D
in mat (nra + nrd) (nca + ncd) (λ(i, j).

if i < nra then if j < nca then A(i, j) else B(i, j − nca) else

if j < nca then C (i − nra, j) else D(i − nra, j − nca))

Now we present an essential functionality for convenient rea-
soning on JNFs: composing a block diagonal matrixA1

. . .
An


from a list of diagonal blocks A1, . . . , An. Using four_block_mat,
the function can be naturally defined in Isabelle as follows, here,
0m nr nc is the zero matrix of size nr × nc.
diag_block_mat [] = 0m 0 0
diag_block_mat (A # As) = (

4 In the case of the Gauss-Jordan elimination, we did not reuse the existing
formalization [4]; instead, we developed the algorithm from scratch, to test
whether the machinery works fluently, and to detect parts where proofs
become to tedious.

90

let B = diag_block_mat As
in four_block_mat A (0m (dimr A) (dimc B))

(0m (dimr B) (dimc A)) B)

Note that this function, as well as other block matrix operations
which we omit presenting here, cannot be expressed in HMA rep-
resentation.

3.3 Strassen Algorithm (Strassen Algorithm)
As a proof-of-concept, we utilize the block matrix functions to de-
fine and prove the soundness of the Strassen algorithm for matrix
multiplication [22]. Its advantage is an improved asymptotic run-
time in comparison the direct computation: the complexity goes
down fromO(n3) toO(nlog2(7)) for a matrix of dimension n×n.

strassen (A, B) = (let nr = dimr A; n = dimc A; nc = dimc B
in if strassen_too_small A B then A ⊗m B else
if strassen_even A B then let

nr2 = nr div 2; n2 = n div 2; nc2 = nc div 2;
(A1, A2, A3, A4) = split_block A nr2 n2;
(B1, B2, B3, B4) = split_block B n2 nc2;
M1 = strassen (A1 ⊕m A4, B1 ⊕m B4);
M2 = strassen (A3 ⊕m A4, B1);
M3 = strassen (A1, B2 	m B4);
M4 = strassen (A4, B3 	m B1);
M5 = strassen (A1 ⊕m A2, B4);
M6 = strassen (A3 	m A1, B1 ⊕m B2);
M7 = strassen (A2 	m A4, B3 ⊕m B4);
C1 = M1 ⊕m M4 	m M5 ⊕m M7;
C2 = M3 ⊕m M5;
C3 = M2 ⊕m M4 ;
C4 = M1 	m M2 ⊕m M3 ⊕m M6
in four_block_mat C1 C2 C3 C4

else let
nr’ = nr div 2 ∗ 2; n’ = n div 2 ∗ 2; nc’ = nc div 2 ∗ 2;
(A1, A2, A3, A4) = split_block A nr’ n’;
(B1, B2, B3, B4) = split_block B n’ nc’;
C1 = strassen (A1, B1) ⊕m A2 ⊗m B3;
C2 = A1 ⊗m B2 ⊕m A2 ⊗m B4;
C3 = A3 ⊗m B1 ⊕m A4 ⊗m B3 ;
C4 = A3 ⊗m B2 ⊕m A4 ⊗m B4
in four_block_mat C1 C2 C3 C4)

Note that the Strassen algorithm considers three different cases:
one for small matrices, where the standard matrix multiplication
is invoked; one for matrices where all dimensions are even – this
part is the main Strassen construction; and the last case where at
least one dimension is odd – in this case we split off single lines
and invoke Strassen’s algorithm recursively on the main matrix,
and perform the other multiplications of single or zero lines with
standard matrix multiplication. Here, one can also observe that it
is beneficial to allow 0-dimensional matrices: for instance if A is a
matrix of dimension 61×80, then splittingA in the last case yields
matrices of dimension 60×80 (A1), 60×0 (A2), 1×80 (A3), and
1× 0 (A4), and there is no need to perform a further case analysis
on which of the dimensions exactly are odd and which are even.

The soundness theorem

dimc A = dimr B =⇒ strassen (A, B) = A ⊗m B

is proven by induction w. r. t. the algorithm whose termination is
ensured by the measure which takes twice the sum of all three
dimensions (plus 1, if not all dimensions are even). It contains the
typical precondition that occur when working in a carrier-based
setting, namely that the soundness statement is only guaranteed
if the dimensions of the matrices fit together. One does not see
these guards in HMA, where the type system takes care of not
multiplying two matrices with incompatible dimensions. However,
the type system also would at least make it quite cumbersome to
formulate Strassen’s algorithm in HMA, if not impossible.

We also specified a setup for the code generator to always use
Strassen’s algorithm for matrix multiplication. However, by default
it is not enabled since it restricts matrix multiplication to rings, so
for instance multiplication of two matrices over natural numbers
would no longer be executable.

4. Complexity Analysis and Jordan Normal
Forms (Jordan Normal Form)

To analyze the growth rate of Ak we first assume that A is in
JNF. Then, the results immediately transfer to all matricesB which
are similar to A, since similarity does not change the asymptotic
growth rate: the largest entries in Ak and Bk are related by a
constant factor.

4.1 Growth Rate of Jordan Normal Forms
First, we formalize the size-n Jordan block

jordan_block n a =


a 1

a . . .
. . . 1

a


in Isabelle as follows (here we use the letter a instead of λ since λ
in Isabelle is reserved for function abstraction):

DEFINITION 4. jordan_block n a =
mat n n (λ(i, j). if i = j then a else if Suc i = j then 1 else 0)

From a list of pairs (n, a), each representing a Jordan block, we
formalize a JNF as follows:

DEFINITION 5. jordan_matrix n_as =
diag_block_mat (map (λ(n, a). jordan_block n a) n_as)

In order to estimate the growth rate of Jk for a JNF J , we first
formalize the closed formula for k-th power of Jordan blocks.

LEMMA 1. (jordan_block n a)k =

mat n n (λ(i, j). if i ≤ j then
(k

j − i

)
∗ ak + i − j else 0)

From the above formula we easily derive the desired bound for k-th
power of Jordan blocks:

LEMMA 2. assumes i < n and j < n
shows

∣∣(jordan_block n a)k
(i, j)

∣∣ ≤ |a|k + i − j ∗ (max 1 kn − 1)

It is straightforward to prove this statement in Isabelle using exist-
ing results on binomial coefficients and the fact that the difference
j − i between two indices i and j are at most n − 1. From the
inequality and Lemma 1, on paper one easily derives the precise
characterization of the growth rate for k-th power of jordan_block
n a, as follows:

• If |a| = 1, then the maximum norm is in Θ(kn−1).
• If |a| < 1, then the maximum norm is bounded by a constant.
• If |a| > 1, then the maximum norm grows exponentially.

In the formalization we proved only the upper bounds; this was
not at all immediate in the case where |a| < 1. An intuitive argu-
ment would be the following: if |a| < 1 then |ak| gets exponen-
tially smaller, and at some point it cancels the polynomially grow-
ing coefficient. Unfortunately, we did not find such a result in the
Isabelle libraries.5 To prove this result, we first manually proved
results like Bernoulli’s inequality:

LEMMA 3. −1 ≤ x =⇒ 1 + n ∗ x ≤ (1 + x)n

5 it might be possible to prove the claim for the real numbers by using
derivatives, but in our formalization we are working in a more general
setting which also allows complex numbers, etc.

91

Then we stepwise developed lemmas to eventually show that, in
an Archimedean field, ax · xd can be bounded by a constant if
0 < a < 1.

LEMMA 4. assumes 0 < a and a < 1
shows 0 < c =⇒ ∃ x. ax ≤ c

and ∃ b. ∀ x. ax ∗ x ≤ b
and ∃ b. ∀ x. ax ∗ xd ≤ b

After having these results formalized, the bounds for Jordan
blocks are easily obtained. It then carries over to JNFs, by using
exponentiation results for block-diagonal matrices, such asA1

. . .
Ap


k

=

A
k
1

. . .
Ak

p


This leads to the following result for polynomial growth of JNFs,
where norm_bound A x states that the norm of each matrix entry of
A is bounded by x.

THEOREM 1. assumes A = jordan_matrix n_as
and ∀ (n,a) ∈ set n_as. n > 0 −→ |a| ≤ 1
and ∀ (n,a) ∈ set n_as. |a| = 1 −→ n ≤ N

shows ∃ c. ∀ k. norm_bound (Ak) (c + kN − 1)

Furthermore, the criterion is precise, in the sense that if the
conditions on the Jordan blocks are not satisfied for N , then the
growth rate is not within O(kN−1).

The theorem also tells that a matrix in JNF is polynomially
bounded if and only if the norms of the diagonal elements are at
most 1, and that the degree of the polynomial bound can be deter-
mined by the maximum size of the Jordan blocks corresponding to
the diagonal elements of norm 1.

4.2 Growth Rate of Arbitrary Matrices
Next we generalize the previous result for growth rate of JNFs over
arbitrary square matrices.

A JNF J is a JNF of a square matrix A, if they are similar.
Hence, the proposition that a matrix A has a particular JNF is
defined as follows:

DEFINITION 6.
jordan_nf A n_as ≡ mat_similar A (jordan_matrix n_as)

By using complexity results for similar matrices, we obtain the
following corollary of Theorem 1:

THEOREM 2. assumes jordan_nf A n_as
and ∀ (n,a) ∈ set n_as. n > 0 −→ |a| ≤ 1
and ∀ (n,a) ∈ set n_as. |a| = 1 −→ n ≤ N

shows ∃ c. ∀ k. norm_bound (Ak) (c + kN − 1)

The result of Neurauter et al. [17] can be obtained from The-
orem 1: Since the diagonal elements of a JNF J are exactly the
eigenvalues of J , and since the eigenvalues of two similar matrices
A and J are identical, it implies that the elements inAk are polyno-
mially bounded if the spectral radius, i. e., the maximum norm of
the eigenvalues ofA, is at most 1. If we are not to actually compute
a JNF, the sizes of the Jordan blocks can be only estimated, e. g.,
by the multiplicities of the eigenvalues, corresponding to [17].

The above textual reasoning was not immediate to formalize
in Isabelle; at the time of development we could not even find
a definition of eigenvalues in the Isabelle libraries (including the
AFP). So, we first had to develop several well-known results on
eigenvalues in our matrix library, before we could eventually prove
the following theorem. Here, the multiplicities of eigenvalues are
encoded by providing the characteristic polynomial in a linearly
factored form. The notation [: −a, 1 :] is Isabelle’s syntax for the
polynomial x− a.

THEOREM 3. assumes A ∈ carrierm n n
and char_poly A = (

∏
a ← as. [: −a, 1 :])

and ∃ n_as. jordan_nf A n_as
and ∀ a ∈ set as. |a| ≥ 1
and ∀ a ∈ set as. |a| = 1 −→ length (filter (op = a) as) ≤ N

shows ∃ c d. ∀ k. norm_bound (Ak) (c + d ∗ kN − 1)

Whereas Theorem 2 gives precise bounds, the approximation
quality of Theorem 3 can be arbitrarily rough; for instance, the k-
th power of the identity matrix of dimensionN is actually constant,
but Theorem 3 accepts onlyO(kN−1) or higher. Hence, we choose
to base our certifier on Theorem 2.

Finally, observe that in both theorems we have to first prove the
existence of a JNF. To this end, we follow the constructive approach
of a textbook [19], that eventually yields an algorithm to compute
JNFs from arbitrary matrices. The algorithm is based on three
components described in the following sections: the Gram-Schmidt
orthogonalization (Sect. 5), the Schur decomposition (Sect. 6), and
elementary row and column transformations (Sect. 7).

5. Gram-Schmidt Orthogonalization
(Gram Schmidt)

In this section, we provide a formalization of the Gram-Schmidt
orthogonalization algorithm that is applicable to complex numbers.

For real-valued vectors, the algorithm is already formalized by
Divasón and Aransay [6]. For our purpose, however, we cannot
assume real-valued vectors; even if the original matrix is real- or
even integer-valued, its eigenvalues and eigenvectors are in general
complex.

Since the algorithm is also of interest of field types such as real
and rat, we do not assume the concrete datatype complex . Instead,
we introduce a new class called conjugatable_field:

class conjugatable_field = field + fixes conjugate :: α ⇒ α

which assumes the following basic properties of conjugation
(where the application of conjugate is denoted by overbar):

a+ b = a+ b a = a −a = −a
a · b = a · b 0 = 0 a = b⇐⇒ a = b

Another key property of conjugation is that a · a is a non-
negative real number for every a ∈ C. Using the HOL class
ordered_comm_monoid_add , we can express the property simply as
follows:

class conjugatable_ordered_field =
conjugatable_field + ordered_comm_monoid_add +

assumes a ∗ a ≥ 0

The base class ordered_comm_monoid_add also assumes a ≥ b
=⇒ c + a ≥ c + b, which is essential for having the following
property:

LEMMA 5. fixes v :: α :: conjugatable_ordered_field vec
assumes v ∈ carrierv n
shows v • v = 0 ←→ v = 0v n

It is trivial that rat and real are instances of conjugatable_
ordered_field by taking the identity functions as conjugate. Note
that the orders < and ≤ can be partial. Hence also for complex
numbers, the following choice of the orders trivially satisfies the
required assumptions.

instantiation complex :: conjugatable_ordered_field
begin

definition [simp]: conjugate ≡ cnj
definition [simp]: x < y ≡ Im x = Im y ∧ Re x < Re y
definition [simp]: x ≤ y ≡ Im x = Im y ∧ Re x ≤ Re y
instance by (intro_classes, auto simp: complex.expand)

end

92

The Gram-Schmidt algorithm is presented as Algorithm 1.

Algorithm 1: Gram-Schmidt Orthogonalization
Input: Linearly independent vectors v1,w2, . . . ,wm.
Output: Orthogonal vectors v1,v2, . . . ,vm such that

span{v1,v2, . . . ,vm} = span{v1,w2, . . . ,wm}.

1 For i = 2, . . . ,m, compute vi = wi −
i−1∑
j=1

vH
j wi

vH
j vj

vj .

2 Return v1,v2, . . . ,vm.

The correctness of the algorithm is stated as follows:

THEOREM 4 (Gram-Schmidt). If input vectors v1,w2, . . . ,wm

are linearly independent, then Algorithm 1 returns orthogonal vec-
tors v1,v2, . . . ,vm that span the same space as the input vectors.

To formalize the above claim in Isabelle/HOL, we require the
notions such as orthogonality, linear dependency and spans.

Orthogonality of a list of vectors is defined as follows.

DEFINITION 7. corthogonal vs ≡
∀ i < length vs. ∀ j < length vs. (vs ! i) • (vs ! j) = 0 ←→ i 6= j

For notions like linear dependency or spans, we employ the vec-
tor space library by Lee [14]. More precisely, in theory VS Connect
we introduce a locale vec_space, where the element type is assumed
to be a field , and the dimension n is fixed.

locale vec_space = fixes f_ty :: α :: field itself and n :: nat
begin

Since the dimension is fixed in this locale, it is easy to show that
vector operations satisfy certain closure properties, and is actually
a sublocale of vectorspace.

sublocale vectorspace F V . . .
end

Here F and V are records that specify field operations and vector
operations, respectively. Now we obtain the formalizations of span,
lin_dep, lincomb, etc., and the correctness of the Gram-Schmidt
algorithm is formalized as follows:

locale cof_vec_space = vec_space f_ty
for f_ty :: α :: conjugatable_ordered_field itself

begin
theorem gram_schmidt:

assumes set ws ⊆ carrierv n and distinct ws
and ¬ lin_dep (set ws)
and us = gram_schmidt n ws

shows span (set ws) = span (set us)
and corthogonal us
and set us ⊆ carrierv n
and length us = length ws

end

6. Schur Decomposition (Schur Decomposition)
In this section, we describe a formalization of the Schur decompo-
sition. The main result is stated as follows, where C is an arbitrary
field of the class conjugatable_ordered_field , e. g., Q, R, or C.

THEOREM 5 (Schur). For every matrix A ∈ Cn×n with n eigen-
values (counting multiplicities), there exists an upper-triangular
matrix B of the following form:

B =


λ1 ∗ · · · ∗

λ2 . . .
···. . . ∗
λn



that is similar toA. Moreover, the diagonal elements λ1, . . . , λn of
B are the eigenvalues of A.

The proof is done constructively by actually formulating Algo-
rithm 2 in Isabelle. It takes a square matrix A and its eigenvalues,
and computes an upper-triangular matrix that is similar to A.

Algorithm 2: Schur Decomposition

Input: A matrix A ∈ Cn×n and the list of its eigenvalues
λ1, . . . , λn (repeated according to their multiplicity).

Output: A pair 〈B,P 〉 of matrices, such that B is
upper-triangular, P is invertible, and A = PBP−1.

1 If n = 0 then return 〈A, I〉.
2 Find an eigenvector v1 corresponding to λ.
3 Extend v1 to an orthogonal basis v1,v2, . . . ,vn using the

Gram-Schmidt algorithm.
4 Let V = [v1 v2 . . . vn] and compute V −1.

5 Compute V −1AV =


λ1 b12 · · · b1n
0
··· A′

0

.

6 Let 〈B′, P ′〉 = Schur Decomposition(A′, λ2, . . . , λn).

7 Return 〈


λ1 b12 · · · b1n
0
··· B′

0

 , V


1 0 · · · 0
0
··· P ′

0

〉.

For finding eigenvectors w. r. t. some eigenvalue λ, we take the
standard approach, i. e., we simplify the matrix A− λI via Gauss-
Jordan elimination into row-echelon form and then extract the first
basis vector of the kernel of this simplified matrix.

In step 3, clearly the Gram-Schmidt orthogonalization can be
employed, but before that we must have a basis that contains v1.
Intuitively, this is easy by properly choosing the unit vectors. How-
ever, the formalization requires tedious reasonings which are now
available in theory Missing VectorSpace.

LEMMA 6 (Step 3). Any non-zero vector v1 ∈ Cn can be ex-
tended to an orthogonal basis {v1,v2, . . . ,vn}.

Textbook algorithms compute orthonormal (i. e., orthogonal
and normalized) bases in step 3. In our version, we omit normaliz-
ing the orthogonal basis, in order to avoid introducing unnecessary
square roots: the execution of real numbers in Isabelle [24] does
neither support nested roots as in

√
1 +
√

2 nor does it support the
combination of different roots as in

√
2 +
√

3.

EXAMPLE 1. Consider the randomly generated matrix3 2 7
4 1 8
1 4 5


Our version of the Schur decomposition delivers0 1

5612
(−15705− 45

√
177) a+ b

√
177

0 1
2
(9 +

√
177) c+ d

√
177

0 0 1
2
(9−

√
177)


as a result with a, b, c, d being large but rational numbers, e. g.,
a = − 1136075823410445

737949547849666
. In contrast, a manually performed compu-

tation within Mathematica6 which uses orthonormal basis in step 3

6 All statements about Wolfram Mathematica in this paper are based on
version 10.2.

93

results in the following matrix:
0 −(7

√
3 + 19

√
59)
√

2

2771−107
√
177

−1283
√
183+145

√
3599

61
√

2771−107
√
177

0 1
2
(9 +

√
177) 11

√
2
61

0 0 1
2
(9−

√
177)


This matrix contains nested roots and would lead to a runtime
exception.

A benefit of normalizing the basis is that V in step 4 becomes
unitary, i. e., V −1 = V H. However, even if the orthogonal basis is
not normalized, V −1 is easily computed.

LEMMA 7. Let v1, . . . ,vn ∈ Cn be orthogonal vectors. Then
V = [v1 · · · vn] is invertible with the following inverse:

V −1 =

[
v1

vH
1 v1

· · · vn

vH
n vn

]H
The following lemma is the key for having upper-triangular

matrix as output.

LEMMA 8. In step 5, the first column of V −1AV is [λ1 0 · · · 0]T.

In order to inductively apply the algorithm to the submatrix A′,
we also require the following lemma:

LEMMA 9. The eigenvalues of A′ are λ2, . . . , λn.

Finally, we present the formalized correctness result for Algo-
rithm 2. Here, the algorithm is formalized as schur_decomposition,
which returns P−1 (as P’) in addition to B and P .

THEOREM 6. fixes A :: α :: conjugatable_ordered_field mat
assumes A ⊆ carrierm n n

and char_poly A = (
∏

(e :: α) ← es. [: −e, 1:])
and schur_decomposition A es = (B, P, P’)

shows A = P ⊗m B ⊗m P’
and P’ ⊗m P = 1m n
and upper_triangular B
and mat_diag B = es

7. Triangular Matrices to Jordan Normal Forms
(Jordan Normal Form Existence)

In the previous section, we formalized the Schur decomposition
that delivers upper-triangular matrices from arbitrary square matri-
ces. In this section, we describe an algorithm that transforms such
an upper-triangular matrix into a JNF.

The following algorithm is derived and improved from the text-
book [19, Sect. 11.1.4], where the algorithm is not explicitly spec-
ified but only applied on an example. It only performs elementary
row and column operations which preserve similarity. For instance,
add_col_sub_row adds a multiple of one column of A to another
one, and at the same time performs the inverse operation – subtrac-
tion of a multiple – as a row operation. Hence, the whole operation
corresponds to P−1AP where P is the elementary matrix corre-
sponding to the addition of a column. In the same way there are
similarity preserving operations for multiplication and swapping
(mult_col_div_row and swap_cols_rows).

For all of these elementary operations we once prove that they
preserve similarity which is then used to show that the overall
algorithm preserves similarity. However, for the more difficult task
– that the resulting matrix is in JNF – we provide lemmas that
describe the resulting matrix after applying an elementary matrix.
For instance, the following lemma characterizes the effect of mult_
col_div_row .

LEMMA 10. assumes i < dimr A and i < dimc A

and j < dimr A and j < dimc A and a 6= 0
shows (mult_col_div_row a k A)(i, j) =

(if i = k ∧ j 6= i then inverse a ∗ A(i, j)
else if j = k ∧ j 6= i then a ∗ A(i, j) else A(i, j))

In the following, we mainly present the textual description of
the algorithm that we extracted from the example calculation in the
textbook. For the reconstruction, we often used Mathematica to ex-
ecute and test prototypes of the algorithm on individual examples.

1. Let us start with an upper-triangular matrix:

A =


λ1 a12 · · · a1n

λ2 . . .
···. . . an−1,n

λn


For every i and j (i < j) such that λi 6= λj , eliminate the i-th
row j-th column element aij , by

add_col_sub_row (aij/(λj − λi)) i j

The iteration should be first by increasing j and then by de-
creasing i in the inner loop.
After this first step, it is ensured that whenever λi 6= λj then
aij = 0.

2. Consider an index j > 2. If there is an index i < j−1 such that
λi = λj but λi+1, . . . , λj−1 are different from λj , then move
λj next to λi, by

swap_cols_rows (i+ 1) j

swap_cols_rows (i+ 2) j

···
swap_cols_rows (j − 1) j

Afterwards λj will be moved to (i+1)-th row (i+1)-th column,
and the rows and columns in between are shifted one row down
and one column right. Repeating this operation by increasing j,
the diagonal elements will be grouped as in the following shape:

A′ =



λ
′
1 ∗ · · · ∗

. . .
···. . . ∗

λ′
1


. . . λ

′
m ∗ · · · ∗

. . .
···. . . ∗

λ′
m




This second step does not occur in the textbook description.
We added it since we do not assume that the eigenvalues on
the diagonal are grouped together. Note that it is important
to execute step 2 after step 1 since changing the order would
destroy the triangular property of the matrix.

3. Transform each diagonal block

B =


λ ∗ · · · ∗

λ . . .
···. . . ∗
λ


into JNF. Note that the result is not necessarily a single Jordan
block. The transformation is done column-by-column: Suppose
that the top-left (k− 1)× (k− 1) submatrix of B is already in

94

JNF. Hence for every i < k, the i-th row is of form

[

k elements︷ ︸︸ ︷
0 · · · 0 λ 0 · · · 0 bik ∗ · · · ∗] (1)

if it is the bottom of a Jordan block, or is of form

[

k elements︷ ︸︸ ︷
0 · · · 0 λ 1 0 · · · 0 bik ∗ · · · ∗] (2)

otherwise. The k-th column is treated as follows:

a) For rows of form (2), eliminate bik by

add_col_sub_row (−bik) (i+ 1) k

b) Find a largest Jordan block (in the (k − 1) × (k − 1) sub-
matrix) whose bottom row is of form (1) with bik 6= 0.

c) If such a Jordan block does not exist, then the k × k sub-
matrix is already in JNF. Otherwise, let l be the row index of
the bottom of the Jordan block. Eliminate every other non-
zero element bik as follows:

add_col_sub_row (bik/blk) i l

add_col_sub_row (bik/blk) (i− 1) (l − 1)

add_col_sub_row (bik/blk) (i− 2) (l − 2)

···
where the number of steps is determined by the size of the
Jordan block left-above of the i-th row i-th column.

d) Normalize the l-th row k-th column value to 1:

mult_col_div_row b−1
lk k

e) Move the 1 down from row l to row k − 1:

swap_cols_rows (l + 1) k

swap_cols_rows (l + 2) k

···
swap_cols_rows (k − 1) k

The full definition of the algorithm requires roughly 140 lines
of Isabelle. It contains several auxiliary functions, e. g., to identify
the Jordan blocks in a matrix in step 3 (b), but there are no serious
deviations between the textual description and the formalization.

In order to prove the soundness of the algorithm, i. e., that the
result is in JNF, we defined several invariants that are established
and maintained throughout the algorithm. Examples are that A is
triangular, A has the eigenvalues grouped together, A has only a
single eigenvalue, a submatrix of A is in JNF, etc.

Most of the correctness proofs are of the form “if A satisfies
invariants X and Y then step α A satisfies invariants X and Z”.
This approach admits separate proofs for each of the steps which
solely reason about the invariants.

However, some of the intermediate steps do not preserve certain
invariants, and in this case a lemma of the above form does not
work. In order to prove the soundness of such steps we must
investigate explicit descriptions for the intermediate matrices.

As an example we would like to mention step 3 (c).

EXAMPLE 2. Consider starting step 3 (c) on matrix

A =


3 1 0 0
0 3 1 0
0 0 3 5

3 1 0
0 3 8

3



The bottom of the largest Jordan block is row 3; so we have to delete
the 8 in row 5. To this end, we first execute add_col_sub_row 8

5
on rows 4 and 2 which results in matrix B below, which is not
triangular. However, after executing add_col_sub_row 8

5
on rows 3

and 1, we get matrixC which again satisfies all previous invariants
and has additionally deleted the 8.

B =


3 1 0 0
0 3 1 0
0 0 3 5

8
5

3 1 0

0 3 0
3

 C =


3 1 0 0
0 3 1 0
0 0 3 5

3 1 0
0 3 0

3


In contrast to our preliminary version of the algorithm (AFP

submission [26]) that always works on the whole matrix, step 3
of the current version works modularly on submatrices (as in the
textbook). The advantage of this change is that less invariants
have to be ensured throughout step 3. For instance, the invariant
λi 6= λj =⇒ aij = 0 that is ensured by step 1 has no longer
to be maintained in step 3, as we know the diagonal elements are
identical. The switch to submatrices required some further results
on similarity of block matrices which have not been available when
initially formalizing the algorithm.

We also deviate from [19] in step 3(e). Here, the textbook sug-
gests that a single swapping would suffice to move the 1 down
from row l to row k − 1, whereas we use several swappings. Actu-
ally, this is a mistake in the textbook: the result of the calculation
P (37)D7(b)T2D7(b−1)P (37) on page 401 is not the claimed JNF
on the left below, but a non JNF on the right.

λ 1
λ 1

λ 1
λ 1

λ 1
λ

λ





λ 1
λ 1

λ
λ 1

λ 1
λ

1 λ


Connecting the different steps yields the algorithm triangu-

lar to jnf vector . It additionally converts the final JNF from a matrix
into a vector representation. The main soundness theorem states
that every upper triangular matrix has a JNF.

THEOREM 7. fixes A :: α :: field mat
assumes A ∈ carrierm n n and upper_triangular A
shows jordan_nf A (triangular_to_jnf_vector A)

Combining this theorem with the Schur decomposition yields
the characterization of existence of JNFs.

THEOREM 8. fixes A :: α :: conjugatable_ordered_field mat
assumes A ∈ carrierm n n
shows (∃ n_as. jordan_nf A n_as) ←→
(∃ as. char_poly A = (

∏
a ← as. [: −a, 1 :]))

In combination with the fundamental theorem of algebra we easily
derive that every complex matrix has a JNF.

8. Polynomial Factorization
(Square Free Factorization)

In order to automatically determine the eigenvalues of a matrix,
we have to factor the characteristic polynomial. To this end, we
implement the following heuristic:

1. Apply Yun’s algorithm to get a square-free representation of p,
i. e., p = c · p11 · p22 · . . . · pkk where c is a constant, no pi has
multiple roots, and two different pi’s share no common root.

95

2. Try to factor each pi further, with the help of a set of potential
factors.

3. If any of the resulting polynomials is quadratic, then use the
well-known formula to compute the roots.7

The heuristic delivers either a fully factored polynomial, or a
partially factored one. In the latter case for polynomials over C,
some non-factored polynomial q of degree 3 or higher remains.

In step 2, we choose the potential factors as follows. For ma-
trices used for complexity analysis via matrix interpretations, we
know that 1 is often an eigenvalue. Thus, we always add x − 1 to
the set of potential factors. Moreover, we add x − a to the set of
potential factors for every matrix element a ofA. We conclude that
the algorithm always succeeds if at most two eigenvalues of A do
not occur inA. We further know, by the Perron-Frobenius theorem,
that if the spectral radius of a non-negative matrix A is 1 then all
eigenvalues with norm 1 are n-th roots of 1, where n is smaller than
the dimension of A. So we always test for the square roots, cube
roots, and quartic roots of 1, which are {±1,±i, −1±i

√
3

2
}. Intro-

ducing
√

3 is not welcome again for the Isabelle implementation of
the reals, but this can be avoided. To be more precise, we replace
the two potential roots −1±i

√
3

2
by one potential factor x2 + x+ 1,

which gives the same precision: For real valued polynomials, the
conjugate of a complex root is also a root. So, if one of −1±i

√
3

2
is

a root, then the other is too, and thus x2 + x+ 1 is a factor.

In the remainder of this section we describe the most challeng-
ing task in the factorization algorithm above, namely the formal-
ization of Yun’s algorithm in Isabelle.

The algorithm is based on computing derivatives (denoted by
p′) and greatest common divisors (denoted by gcd(p, q)) of poly-
nomials. Both operations are available in Isabelle. Nevertheless, for
derivatives we made a local copy, since the existing definition is re-
stricted on polynomials over real_normed_field , whereas Yun’s al-
gorithm also works on other carriers, e. g., Q. Our algorithm works
for arbitrary fields of characteristic 0 (field_char_0 in Isabelle).

Instead of presenting the Isabelle definition here, we just give
the defining equations of Yun’s algorithm. Here we further assume
that p is monic, i. e., the leading coefficient of p is 1.

b0 =
p

gcd(p, p′)
bn+1 =

bn
an

c0 =
p′

gcd(p, p′)
cn+1 =

dn
an

dn = cn − b′n an = gcd(bn, dn)

The algorithm stops if bn = 1, and then returns a10a21 . . . ann−1 as
the desired factorization.

In the formalization, we used a command to define partial
functions, for which termination is not guaranteed. The reason
is that the algorithm, which takes two arbitrary polynomials as
input, actually does not terminate if it is started with wrong values;
it should be started with b0 and c0. Moreover, the termination
argument relies on the fact that the algorithm actually computes
a square-free factorization, so a termination proof is only possible
after having proved soundness.

In order to prove soundness, let q10 . . . qn+1
n be a square-free

factorization of p – we also formalized that such a factorization
always exists. We prove the following closed-form expressions for
ak, bk, ck, and dk in a large mutual induction on k. Here, we write

7 On purpose we did not integrate the solved forms for cubic or quartic poly-
nomials, which require nested square/cube/quartic roots: these operations
are not supported in Isabelle’s current implementation of real numbers.

qk . . . q
′
i . . . qn meaning qk . . . qi−1 q

′
i qi+1 . . . qn.

ak = qk

bk = qk . . . qn

ck =

n∑
i=k

(i+ 1− k) qk . . . q
′
i . . . qn

dk = qk

n∑
i=k+1

(i− k) qk+1 . . . q
′
i . . . qn

The formulas for bk+1, ck+1 and dk only need straightforward
calculations. For instance, we deduce the formula for dk, assuming
bk and ck are done, as follows:8

dk = ck − b′k

=

(
n∑

i=k

(i+ 1− k) qk . . . q
′
i . . . qn

)
− (qk . . . qn)′

=

n∑
i=k

(i− k) qk . . . q
′
i . . . qn

= (k − k) q′k qk+1 . . . qn +

n∑
i=k+1

(i− k) qk qk+1 . . . q
′
i . . . qn

= 0 + qk ·
n∑

i=k+1

(i− k) qk+1 . . . q
′
i . . . qn

Formalization becomes more involved for ak, b0, and c0; here
we show the result for ak.

ak = gcd(bk, dk)

= gcd

(
qk . . . qn, qk ·

n∑
i=k+1

(i− k) qk+1 . . . q
′
i . . . qn

)
(1)
= qk · gcd

(
qk+1 . . . qn,

n∑
i=k+1

(i− k) qk+1 . . . q
′
i . . . qn

)
(2)
= qk · 1

In equality (1), we just extract the common factor qk out of the
greatest common divisor, but formalizing this single step required
roughly 250 lines. We needed the following lemma which was not
found in the Isabelle distribution:

LEMMA 11. monic p =⇒ gcd (p ∗ q) (p ∗ r) = p ∗ gcd q r

The lemma is proved using results from HOL-Algebra [3]; we
formalize that polynomials over fields form a unique factorization
domain, and then apply results from HOL-Algebra that connect
divisibility with the set of irreducible factors.

Also for equality (2) we use the connection to HOL-Algebra to
prove the following lemma, where dvd is Isabelle’s predicate for
“divides”.

LEMMA 12. irreducible p =⇒ p dvd q ∗ r =⇒ p dvd q ∨ p dvd r

We prove equality (2) as follows. Consider an irreducible and
non-constant factor r that divides qk+1 . . . qn. Using Lemma 12,
we obtain some l ∈ {k + 1, . . . , n} such that r divides ql. Next,
suppose that r divides the sum:

n∑
i=k+1

(i− k) qk+1 . . . q
′
i . . . qn

8 Similar reasoning was done in the formalization, although with a slight
difference: the qi’s are not provided as single polynomials, but as products
of irreducible polynomials.

96

Since r divides ql, it divides every qk+1 . . . q
′
i . . . qn with i 6= l.

Thus, r must also divide (l − k) qk+1 . . . q
′
l . . . qn.

Recall that we are assuming q10 . . . q
n+1
n to be a square-free

factorization. That is, as r divides ql, it cannot divide other qi’s.
Thus, again using Lemma 12, we conclude that r divides q′l.

Now write ql as the product r1 . . . rm of irreducible factors.
As we are assuming r is irreducible, we obtain r = rj for some
j ≤ m. We know that r divides q′l, which is

q′l =

m∑
i=1

r1 . . . r
′
i . . . rm

We do a similar reasoning as above, concluding rj divides r′j . This
is possible only if rj is a constant, deriving contradiction.

9. Certifying Complexity Analysis
(Jordan Normal Form Uniqueness)

In principle, now we have all ingredients to ensure polynomial
growth rates of Ak of a given matrix A. First we consider a naive
approach that tries to compute a JNF of A. Unfortunately, it turns
out that the approach easily fail into runtime errors, due to the
limited support for irrational numbers in Isabelle implementation.
Hence, we provide another algorithm that do not compute the entire
JNF. The second approach will not cause the runtime error, if
the input matrix does not have already irrational elements, and
eigenvalues fall in the supported form.

9.1 Naive Approach
First, we consider Algorithm 3 which naively combines the previ-
ously formalized algorithms to compute JNFs.

Algorithm 3: Naive Certification Algorithm
Input: A square matrix A and a degree N .
Output: Accept if Ak ∈ O(kN), and reject otherwise.

1 Invoke the factorization algorithm on the characteristic
polynomial to determine the eigenvalues.

2 Ensure that the norms of all eigenvalues is at most 1.
3 Compute the JNF by the algorithms in Sect. 5–7
4 Figure out the size n of the largest Jordan block which has an

eigenvalue with norm 1.
5 Accept if n− 1 ≤ N and reject otherwise.

The soundness of Algorithm 3 easily follows Theorem 2. On
the other hand, it is not complete in the sense that the eigenvalues
are not always computed. Moreover, due to the limits of the imple-
mentation of irrational numbers, an execution of the algorithm may
cause runtime errors even if all eigenvalues have been determined.

As testing the algorithm on examples, we realized that the latter
problem is significant.

EXAMPLE 3. Take the following matrix

A =



0 1
2

0 0 0 0

1 0 4 0 0 0

0 0 0 1
3

0 0

0 0 1 0 0 0

0 8 0 9 0 1
3

2 0 0 4 1 0


as input. The factorization algorithm automatically figures out the
six eigenvalues: ± 1

3

√
3,± 1

3

√
3,± 1

2

√
2. After successfully check-

ing step 2, we continue with step 3, where after the first four iter-
ations of the Schur decomposition (with eigenvalues ± 1

3

√
3), the

remaining submatrix is

B =

[
a
√

3 b
c d

√
3

]
with a, b, c, d ∈ Q. In order to compute an eigenvector for eigen-
value 1

2

√
2 of B we need to compute the matrix B − 1

2

√
2I . Un-

fortunately, at this point Isabelle’s implementation of real number
raises a runtime error, as it does not support computation involving
different square roots as in a

√
3− 1

2

√
2.

To circumvent the problem, we next formalize another algo-
rithm which determines the sizes of Jordan blocks, without explic-
itly computing the JNF via Schur decomposition and the algorithm
for upper-triangular matrices. Nevertheless, the results of Sect. 6–8
are essential since the soundness of the upcoming algorithm relies
upon the existence of a JNF.

9.2 Avoiding Multiple Square Roots
We provide an algorithm that, given a matrix A and a potential
Jordan block (n, λ), returns the number of occurrences of this
block in a JNF of A. This number is valid for any JNF of A,
indicating the uniqueness of JNFs up to permutation of the blocks.

At this point we follow the proofs based on generalized eigen-
spaces, a topic that we would have liked to avoid in the beginning.

Internally, the algorithm uses a function d(n) that computes the
dimension of the kernel of (A − λI)n, where it can be shown
that the number of occurrences of Jordan block (n, λ) is exactly
2d(n)− d(n+ 1)− d(n− 1). To achieve this result, we formalize
several results on the kernel of a matrix, for instance that similarity
transformations do not change the dimension of the kernel, or that
the kernel dimension of a diagonal block matrix is exactly the sum
of the kernel dimensions of each block.

Using this new algorithm for determining the sizes of Jordan
blocks, we end up in an improved certification algorithm, Algo-
rithm 4, which is available as mat_estimate_complexity_jb in theory
Jordan Normal Form Complexity Approximation. The new
version never raises runtime errors (unless the input matrix is al-
ready irrational), and can even succeed without figuring out all
eigenvalues. To this end, it utilizes Sturm’s method [7, 23] to deter-
mine the number of real roots of a polynomial in a given interval
(ignoring multiplicities).

Algorithm 4: Certification Algorithm for Matrix Growth

Input: A matrix A ∈ Cn×n, C ∈ {Z,Q,R}, a degree N .
Output: Accept if Ak ∈ O(kN), and reject otherwise.

1 Convert A into a matrix over complex numbers.
2 Invoke the factorization algorithm on the characteristic

polynomial, resulting in a set of eigenvalues λi and a list of
real valued polynomials qj with degrees dj ≥ 3 which
contain the remaining eigenvalues as roots.

3 For each eigenvalue λi, ensure |λi| ≤ 1; if |λi| = 1, then
figure out the size n of the largest Jordan block for λi and
ensure n− 1 ≤ N .

4 For each qj with degree dj determine the number of different
real roots in the open interval (−1, 1) with the help of
Sturm’s method. Ensure that this number equals dj .

Collecting all results of the previous sections it is actually not
difficult to prove soundness of Algorithm 4. Still, there is some te-
dious reasoning involved, namely in performing all the conversion
between different types. This is required in step 1 (for matrices),
and in step 4 where the real-valued polynomial of type complex poly
needs to be converted into a polynomial of type real poly, so that
Sturm’s method can be applied.

97

The fact that the algorithm does not raise runtime errors on
rational matrices as input is proven as follows: The factorization
algorithm has been defined in a way that it does not introduce
irrational numbers except in the last step where the explicit roots
for polynomials of degree 2 are calculated. Hence, each qj is a
rational polynomial and each λi is of the form a+ b

√
c for rational

numbers a, b, c. If a λi has this form, then also the computation
of the largest Jordan block will not raise runtime errors in step 3,
since all intermediate values will have the form a′ + b′

√
c for

varying a′, b′ ∈ Q and for the same fixed c (this form is fully
supported by the implementation of the real numbers). Finally, the
input to Sturm’s algorithm are just rational polynomials, where also
a runtime error cannot occur.

9.3 Completeness
By the completeness of Theorem 2, Algorithm 4 is complete if
all eigenvalues are determined. This covers, for instance, upper-
or lower-triangular matrices, since then the eigenvalues appear as
elements in the matrix, which are tested in the factorization.

We further argue that the algorithm is complete, if all eigenval-
ues are real. So let the growth rate of Ak be within O(kN) and
execute the algorithm on A and N . Clearly steps 1 and 2 cannot
fail. Step 3 cannot fail either, since any eigenvalue λi that is re-
fused in step 3 would also violate the assumption on the growth
rate. Finally, consider some polynomial qj in step 4. By the pre-
conditions all eigenvalues of A and hence, all roots of qj are real.
Note that there cannot be any eigenvalue with norm larger than 1 as
this would violate the assumption on the growth rate of A. More-
over, also the values±1 cannot be roots of qj since the factorization
algorithm explicitly tested these values. Hence, all the roots of qj
are indeed in the interval (−1, 1). And as qj is a result of a square-
free factorization, none of the roots occurs multiple times. Hence,
the number of different real roots in (−1, 1) must be exactly the
degree dj of qj .

We also show that the algorithm is complete, if the dimension
of A and the degree of the growth rate differ by at most 3, and the
dimension is at least 4.

For a dimension of 5 or above this can be argued as follows. Let
A ∈ Cn×n, n ≥ 5, and let the growth rate of Ak be Θ(kN) for
N ≥ n − 3. Then there exist some eigenvalue λ whose Jordan
block has size N + 1. The size of this block is at least n − 2
and since n ≥ 5, the multiplicity of λ is strictly larger than n

2
.

Hence, λ is the unique eigenvalue with such a high multiplicity
and is thus extracted by the square-free factorization algorithm.
Hence, the remaining polynomial is at most quadratic and can also
be factored. But then all eigenvalues are determined and as argued
above, then the algorithm is precise.

The argumentation for dimension 4 works along the same line,
where as a new case it can happen that the square-free factorization
produces two eigenvalues with multiplicity 2. But then the result
are two quadratic polynomials which both can be factored.

We end this section by a short example where the integration of
Sturm’s method is essential.

EXAMPLE 4. Consider

A =


1 1

2
1
3

1
5

0 1
10

1
7

1
8

0 1
5

1
3

1
5

0 1 0 1
3


We prove a constant bound on Ak, i. e., we choose N = 0. First,
the characteristic polynomial is computed and factored into

(x− 1)

(
x3 − 23

30
x2 +

61

2520
x+

29

2520

)

where no roots of the cubic polynomial could be inferred. Step
3 clearly succeeds since the multiplicity of the eigenvalue 1 is a
bound on the size of the Jordan blocks for that eigenvalue. Finally,
step 4 succeeds since all roots of the cubic polynomial are real
values in the range (−1, 1). Note that although Mathematica is
able to symbolically compute with cubic roots, it is not able to
figure out that all roots are real. For instance the largest one is

λ =
1

90

(
23 +

(1120637 + 135i
√

141178289)1/3

14
2
3

+
6491

(15688918 + 1890i
√

141178289)
1
3

)
.

and the numerical approximation of λ yields an imaginary part
of around 10−16. Furthermore, Mathematica cannot symbolically
simplify the expression Im(λ) to 0 where Im denotes the imaginary
part of a complex number.

10. Summary
We evaluate the significance of our contributions w. r. t. the power
of CeTA via experiments with different complexity tools.

The results are shown in Table 1. It does not contain detailed
statistics on the number of accepted proofs; actually, all the proofs
have been successfully validated.

Each row indicates the number of benchmarks each tool/strategy
claimed to be in the complexity class. For each tool we test two
strategies: the first strategy (CaT-old and TCT-old) restricts to the
technique [16] which was already supported by the old version of
CeTA, and the second strategy (CaT-new and TCT-new) allows
the tool’s best to infer sharp complexity bounds, involving non-
triangular matrices (in case of CaT) and multiplicity analysis (in
both tools). In both strategies the base technique is restricted to
matrix interpretations.

In addition, for each strategy we also test the best of CeTA
(“++”): we reduce the claimed complexity bound as long as CeTA
accepts, without changing the proof. The last two columns summa-
rizes the result: column “Old” corresponds to the union of CaT-old
and TCT-old, whereas “New++” represents the union of all tools
and strategies.

Only looking at the last two columns one can clearly see the im-
provements gained by our developments: We could more than dou-
ble the number of certified complexity proofs for a linear bound.

Interestingly, even for the new strategies (CaT-new and TCT-
new), the concluded complexity bound could be optimized with
CeTA as post-processor. For instance, consider the benchmark
Transformed CSR 04/Ex4 7 77 Bor03 iGM. On this example,
all tools and strategies could conclude either O(k4) or O(k5), but
post-processing revealed that from any of their proofs one can ac-
tually infer O(k3). Sometimes the post-processing also reduces
the degree by two; for instance, on benchmark ICFP 2010/96086
the best bound claimed by the tools was O(k4) whereas post-
processing yields O(k2).

Finally, also the total number of certifiable complexity proofs
could be improved, since some of the benchmarks require matrix
interpretations which are not upper triangular, e. g., Mixed SRS/3.

More details on the experiments are available online.9 The web-
site also contains experiments with AProVE; however, the results
for AProVE are not so interesting for this paper, since it supports
only the basic result [16] that is already completely covered by the
old version of CeTA.

Although the experiments are quite satisfying, there is ample
opportunity for future work. For instance, one can formalize and

9 http://cl-informatik.uibk.ac.at/software/ceta/
experiments/jnf/.

98

CaT-old ++ CaT-new ++ TCT-old ++ TCT-new ++ Old New++

O(1) 0 0 1 1 0 1 1 1 0 1
O(k) 51 83 99 105 46 68 68 68 51 106
O(k2) 178 202 212 215 160 173 173 174 178 215
O(k3) 204 219 223 227 177 185 185 186 206 227
O(k4) 224 224 232 232 184 186 187 187 224 232
O(k5) 224 224 232 232 186 186 187 187 224 232

Table 1. Experiments with CaT and TCT

integrate the Perron-Frobenius theorem for non-negative real ma-
trices. This would allow to develop a decision procedure for the
property “spectral radius ≤ 1”, and hence one could improve Al-
gorithm 4 in the case that the eigenvalues cannot be completely de-
termined. Moreover, one can switch from the spectral radius to the
joint spectral radius, which investigates not only the power Ak of
a single matrix, but arbitrary products of k matrices in a given set.
This approach is implemented in both CaT and TCT and results in
even more precise bounds for matrix interpretations, as illustrated
in [15]. Finally, this work would profit from a full formalization
of the algebraic complex numbers in Isabelle; then one can always
compute the eigenvalues precisely and as a consequence have a de-
cision procedure for the property Ak ∈ O(kN), provided that the
values in A are algebraic.

Acknowledgments
We would like to thank Michael Schaper and Harald Zankl for their
help on configuring TCT and CaT, and the anonymous referees for
their helpful feedback. This research was supported by the Austrian
Science Fund (FWF) project Y757.

References
[1] M. Avanzini and G. Moser. Tyrolean Complexity Tool: Features and

usage. In Proc. RTA 2013, volume 21 of LIPIcs, pages 71–80, 2013.

[2] M. Avanzini, C. Sternagel, and R. Thiemann. Certification of com-
plexity proofs using CeTA. In Proc. RTA 2015, LIPIcs 36, pages 23–
39, 2015.

[3] C. Ballarin. Reading an algebra textbook. In Proc. CICM Workshops
2013, volume 1010 of CEUR Workshop Proceedings, 2013.

[4] J. Divasón and J. Aransay. Formalization and execution of linear
algebra: from theorems to algorithms. In Proc. LOPSTR 2013, volume
8901 of LNCS, 2013.

[5] J. Divasón and J. Aransay. Gauss-Jordan algorithm and its applica-
tions. Archive of Formal Proofs, Sept. 2014. URL http://afp.sf.
net/entries/Gauss_Jordan.shtml.

[6] J. Divasón and J. Aransay. QR decomposition. Archive of Formal
Proofs, 2015. URL http://afp.sourceforge.net/entries/
QR_Decomposition.shtml.

[7] M. Eberl. A decision procedure for univariate real polynomials in
Isabelle/HOL. In Proc. CPP 2015, pages 75–83. ACM, 2015.

[8] J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations
for proving termination of term rewriting. Journal of Automated
Reasoning, 40(2-3):195–220, 2008.

[9] J. Giesl, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, C. Otto,
M. Plücker, P. Schneider-Kamp, T. Ströder, S. Swiderski, and R. Thie-
mann. Proving termination of programs automatically with AProVE.
In Proc. IJCAR 2014, volume 8562 of LNCS, pages 184–191, 2014.

[10] J. Giesl, F. Mesnard, A. Rubio, R. Thiemann, and J. Waldmann. Ter-
mination competition (termCOMP 2015). In Proc. CADE-25, volume
9195 of LNCS, pages 105–108, 2015.

[11] J. Harrison. The HOL light theory of Euclidean space. J. Autom.
Reasoning, 50(2):173–190, 2013.

[12] B. Huffman and O. Kuncar. Lifting and transfer: A modular design
for quotients in Isabelle/HOL. In Proc. CPP 2013, volume 8307 of
LNCS, pages 131–146, 2013.

[13] C. Jordan. Traité des substitutions et des équations algébriques.
Gauthier-Villars, 1870.

[14] H. Lee. Vector spaces. Archive of Formal Proofs, 2014. URL
http://afp.sourceforge.net/entries/VectorSpace.shtml.

[15] A. Middeldorp, G. Moser, F. Neurauter, J. Waldmann, and H. Zankl.
Joint spectral radius theory for automated complexity analysis of
rewrite systems. In Proc. CAI 2011, volume 6742 of LNCS, pages
1–20, 2011.

[16] G. Moser, A. Schnabl, and J. Waldmann. Complexity analysis of term
rewriting based on matrix and context dependent interpretations. In
Proc. FSTTCS 2008, volume 2 of LIPIcs, pages 304–315, 2008.

[17] F. Neurauter, H. Zankl, and A. Middeldorp. Revisiting matrix inter-
pretations for polynomial derivational complexity of term rewriting.
In Proc. LPAR-17, volume 6397 of LNCS, pages 550–564, 2010.

[18] T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL – A Proof
Assistant for Higher-Order Logic, volume 2283 of LNCS. 2002.

[19] R. Piziak and P. L. Odell. Matrix theory: from generalized inverses to
Jordan form. CRC Press, 2007.

[20] C. Sternagel and R. Thiemann. Executable matrix operations on
matrices of arbitrary dimensions. Archive of Formal Proofs, June
2010. URL http://afp.sf.net/entries/Matrix.shtml.

[21] C. Sternagel and R. Thiemann. Formalizing monotone algebras for
certification of termination and complexity proofs. In Proc. RTA-
TLCA 2014, volume 8560 of LNCS (ARCoSS), pages 441–455, 2014.

[22] V. Strassen. Gaussian elimination is not optimal. Numerische Mathe-
matik, 13:354–356, 1969.

[23] J. C. F. Sturm. Mémoire sur la résolution des équations numériques.
Bulletin des Sciences de Férussac, 11:419–425, 1829.

[24] R. Thiemann. Implementing field extensions of the form Q[
√
b].

Archive of Formal Proofs, Feb. 2014. URL http://afp.sf.net/
entries/Real_Impl.shtml.

[25] R. Thiemann and C. Sternagel. Certification of termination proofs
using CeTA. In Proc. TPHOLs’09, volume 5674 of LNCS, pages 452–
468, 2009.

[26] R. Thiemann and A. Yamada. Matrices, Jordan normal forms, and
spectral radius theory. Archive of Formal Proofs, Aug. 2015. URL
http://afp.sf.net/entries/Jordan_Normal_Form.shtml.

[27] J. Waldmann. Polynomially Bounded Matrix Interpretations. In
Proc. RTA 2010, volume 6 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 357–372, Dagstuhl, Germany, 2010.

[28] D. Yun. On square-free decomposition algorithms. In Proc. the third
ACM symposium on Symbolic and Algebraic Computation, pages 26–
35, 1976.

[29] H. Zankl and M. Korp. Modular complexity analysis for term rewrit-
ing. Logical Methods in Computer Science, 10(1:19):1–34, 2014.

99

