
A Framework for Developing Stand-Alone
Certifiers 1

Christian Sternagel and René Thiemann

Institute of Computer Science, University of Innsbruck
6020 Innsbruck, Austria

Abstract

Current tools for automated deduction are often powerful and complex. Due to their complexity there is a
risk that they contain bugs and thus deliver wrong results. To ensure reliability of these tools, one possibility
is to develop certifiers which check the results of tools with the help of a trusted proof assistant. We present
a framework which illustrates the essential steps to develop stand-alone certifiers which efficiently check
generated proofs outside the employed proof assistant. Our framework has already been used to develop
certifiers for various properties, including termination, confluence, completion, and tree automata related
properties.

Keywords: Certification, Isabelle/HOL, Proof Assistants

1 Introduction

Due to their increased power, automated provers like SAT-solvers, SMT-solvers, au-

tomated first-order theorem provers, model checkers, termination provers, etc., are

becoming increasingly popular for software verification. However, the complexity of

these provers comes with the risk of bugs that cause wrong answers (e.g., a termi-

nation claim for a nonterminating program). Hence, the reliability of the generated

answer is usually reduced whenever the complexity of the prover is increased.

For reliability it is therefore of major importance to validate answers. To this

end, provers not only have to deliver a binary answer like SAT or UNSAT, but must

additionally provide justification in form of a certificate, which usually depends on

the domain of the prover. It might be a satisfying assignment or a natural deduction

proof for a SAT-solver, a well-founded measure or looping sequence for a termina-

tion prover, etc. Certification—i.e., validation of the certificate—can be applied to

recover the desired degree of reliability for powerful but complex automated provers.

1 Supported by FWF (Austrian Science Fund) projects J3202 and P22767.

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 312 (2015) 51–67

1571-0661/© 2015 The Authors. Published by Elsevier B.V.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2015.04.004

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2015.04.004
http://dx.doi.org/10.1016/j.entcs.2015.04.004
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/

In this paper we present a concrete framework for conveniently developing highly

reliable, efficient, and easy-to-use certifiers. To this end, in § 2, we first discuss vari-
ous alternatives on how to perform certification. Then, our framework is introduced

step-by-step. We discuss error handling in § 3, error generation in § 4, parsing in

§ 5, and proving soundness of the final certifier in § 6. We conclude in § 7.
We illustrate our framework by means of a running example. Since this example

poses only a quite simple certification task, we shortly want to mention that the

framework has already successfully been applied for much more complex certification

tasks where the certifier itself consists of over 35,000 lines of Haskell code.

In the following, everything is illustrated for the proof assistant Isabelle/HOL [17],

but most parts should easily be adaptable to similar proof assistants like Coq [2] or

PVS [18], provided they support code generation mechanisms. By code generation

we mean an automatic and trusted translation from functions defined in the logic

of the used proof assistant into actual program code. For example, Isabelle’s code

generator supports StandardML and Haskell (amongst others) as target languages.

We refer to the work of Haftmann and Nipkow [12] for more details.

All components of the framework have been made available in the archive of for-

mal proofs [21,23,24], and the sources of the running example are freely available un-

der http://cl-informatik.uibk.ac.at/software/ceta/framework. Some parts

of this work have already been presented earlier [26], but in a much less complete

and detailed form.

Our approach is aimed to ease the construction of verified checkers for certifying

algorithms [4]. In the running example this is demonstrated for Post’s correspon-

dence problem, while in earlier work [26] we employed the same methodology to

build the checker CeTA for termination provers (in fact, the framework we present

here was distilled from those parts of CeTA we deemed generally useful).

2 Certification

Certification of an automatically generated proof (asserting that some input has

some property) can be performed in several ways, shortly discussed in the following.

As a running example, we consider Post’s Correspondence Problem (PCP) [20].

Given an alphabet Σ, a PCP instance p is a set of pairs of words over Σ. It is

solvable iff there is a nonempty list [(x1, y1), . . . , (xn, yn)] of pairs of words such

that each (xi, yi) ∈ p and x1 . . . xn = y1 . . . yn.

It is well-known that solvability of PCP instances is undecidable in general. We

want to validate certificates for solvable PCP instances. This is a trivial certification

task, but can be used to illustrate various design choices and challenges in the

process of developing a certifier. We assume that the certificate numbers each pair

of words in p and provides the solution as a list of numbers.

C. Sternagel, R. Thiemann / Electronic Notes in Theoretical Computer Science 312 (2015) 51–6752

http://cl-informatik.uibk.ac.at/software/ceta/framework

2.1 Human Inspection

Clearly, humans can check certificates, provided that certificates are rendered in

a human readable form. For example, the PCP instance p = {0 : (A,ABA), 1 :

(AB,BB), 2 : (BAA,AA)} and the certificate in form of the solution 0, 2, 1, 2 is

rendered in the following table.

0 2 1 2

A1 B2A3A4 A5B6 B7A8A9

A1B2A3 A4A5 B6B7 A8A9

It is easy to see from this table that p is solvable: just check whether the columns

correspond to word pairs in p. Moreover, the subscripts 1, . . . , 9 for the position

within the word help when checking that both rows contain the same word: just

check that both rows contain the subscripts 1 to 9 in ascending order and each

number is attached to the same letter in both rows.

However, human inspection is clearly error-prone and therefore not the best

method for certification. For example, consider the PCP instance

p′ = {0 : (AAB,A), 1 : (AB,ABB), 2 : (AB,BAB), 3 : (BA,AAB)}

for which the shortest solution is 1, 3, 2, 3, 3, 1, 0, 1, 3, 2, 3, 2, 3, 3, 2, 3, 3, 1, 0, 3,

3, 1, 0, 2, 3, 0, 0, 2, 3, 3, 3, 1, 0, 1, 0, 0, 0, 2, 3, 2, 3, 0, 1, 0, 3, 3, 1, 0, 3, 0, 0, 2, 3,

0, 0, 2, 0, 0, 2, 0, 1, 0, 3, 0, 0, 2. Checking this solution by hand is at least tedious.

When we move from PCP to more complex certificates—whose validation involves

elaborate computations—human inspection is not feasible any more.

2.2 Certification via Programs

Instead of human inspection, we can write a program that checks all proof steps

mentioned in the certificate.

This is often not too complex—in comparison to writing the program which has

to produce the proof—and also possibly a good option for getting a certifier in case

of simple certificates like the ones for solvable PCP instances. Nevertheless, this

approach also has some severe drawbacks: e.g., if checking certificates requires some

complicated decision procedure, then the program which implements this decision

procedure is itself complex and may be buggy. Hence, the reliability of the certifier

decreases with its complexity.

Another problem is the dependence on potentially flawed paper proofs and in-

consistent assumptions: for example, theorems as they are stated in papers (and

implemented in tools) might be wrong; and when combining methods from different

papers, it might happen, that the methods make slightly different but incompati-

ble assumptions where this incompatibility might remain undetected. For example,

[6] contains some inconsistent assumptions that have only been spotted in [25, § 5]
during the development of a certifier—in this case all problems could be repaired,

C. Sternagel, R. Thiemann / Electronic Notes in Theoretical Computer Science 312 (2015) 51–67 53

datatype letter = A | B
type-synonym word = letter list
type-synonym pcp-problem = (word × word) set

definition solvable :: pcp-problem ⇒ bool
where
solvable pcp ←→ (∃ pair-list .
set pair-list ⊆ pcp ∧
pair-list 	= [] ∧
concat (map fst pair-list) = concat (map snd pair-list))

definition p ′ :: pcp-problem
where
p ′ =
{([A, A, B], [A]),
([A, B], [A, B , B]),
([A, B], [B , A, B]),
([B , A], [A, A, B])}

Fig. 1. Specifying Input and Solvability

but this is not always the case.

An example of this approach is the algorithmic library LEDA (which was ex-

tended to use verified checkers by Alkassar et al. [1]).

2.3 Certification via Proof Assistants

To increase reliability, we can make use of LCF-style [10,11,19] proof assistants,

i.e., proof assistants whose soundness relies on a small trusted kernel and where

definitional packages allow us to write more high-level proofs which are then broken

down into kernel-primitives without adding new axioms.

When using proof assistants, one first has to model the property of interest.

Whether the model corresponds to the real property that one is interested in, has

to be carefully checked by humans.

However, afterwards one can turn the certificate into a proof script which can

then be checked by the proof assistant, yielding the desired high degree of reliability.

As an example, consider the following Isabelle/HOL [17] formalization of PCP.

It starts with the specification of PCP instances and their solvability, and defines

one instance p ′ (corresponding to example p′ mentioned in § 2.1), cf. Figure 1.

In the definition of solvable, the condition set pair-list ⊆ pcp asserts that all pairs

in the list are contained in the PCP instance, and in the equality test concat . . . =

concat . . ., map fst pair-list and map snd pair-list projects the list of pairs of words

into the list of words for the left- and right-hand sides of the pairs, respectively.

After the specification, solvability (of p′) can be proven by the script in Figure 2.

First, the function pair-of-index is defined, which maps indices to corresponding

word-pairs of p′. Then, the proof of solvability is performed: first, the solution from

the certificate is used as witness for the existential quantifier, and then Isabelle’s

simplifier is invoked to check that all conditions of a valid solution are met.

This approach has several advantages, but also some disadvantages:

+ The validation is highly reliable.

+ One can perform a shallow embedding, i.e., features of the proof assistant may

be used for modeling the given input problem and for establishing the proof. As

C. Sternagel, R. Thiemann / Electronic Notes in Theoretical Computer Science 312 (2015) 51–6754

fun pair-of-index :: nat ⇒ word × word
where
pair-of-index i = nth
[([A, A, B], [A]),
([A, B], [A, B , B]),
([A, B], [B , A, B]),
([B , A], [A, A, B])] i

lemma pcp-solvable: solvable p ′
apply (unfold solvable-def p ′-def)
apply (rule exI [of - (map pair-of-index
[1 ,3 ,2 ,3 ,3 ,1 ,0 ,1 ,3 ,2 ,3 ,2 ,3 ,3 ,2 ,3 ,3 ,1 ,0 ,3 ,3 ,1 ,0 ,2 ,3 ,0 ,0 ,2 ,3 ,3 ,3 ,1 ,0 ,
1 ,0 ,0 ,0 ,2 ,3 ,2 ,3 ,0 ,1 ,0 ,3 ,3 ,1 ,0 ,3 ,0 ,0 ,2 ,3 ,0 ,0 ,2 ,0 ,0 ,2 ,0 ,1 ,0 ,3 ,0 ,0 ,2])])

apply simp
done

Fig. 2. Proving Solvability

a consequence it is often possible to specify the model succinctly and readable,

and it also eases the generation of proofs.

In the case of PCP, as example for shallow embedding we created a datatype

for letters which is specific to the PCP instance p′. Moreover, we used Isabelle’s

simplifier to conclude validity of a solution. Similarly, one might use built-in oper-

ators or quantifiers like λ, ∀, etc., to model the input problem; or one might invoke

some powerful routines from the proof assistant to discharge proof obligations,

like an arithmetic solver, etc.

+ If the property of interest is related to proof obligations in the proof assistant

itself, then certification allows safe integration of untrusted automated tools into

the proof assistant in order to increase the degree of automation.

For example, the Sledgehammer tool of Isabelle [5] can solve open proof goals

by invoking external automated theorem provers, where the generated proofs are

then replayed within the proof assistant with the help ofmetis, an Isabelle internal

prover acting as a certifier.

− For certification, one needs to have the proof assistant installed and started.

Moreover, checking proofs within the proof assistant is usually slower than just

executing a program as in § 2.2.
− If a certificate is not accepted, then the proof assistant gets stuck on some inter-

mediate proof obligation, potentially with some error message. Some knowledge

of the proof assistant may be required in order to understand why the certificate

was rejected. For example, for understanding rejected PCP certificates, it might

be required to understand Coq-, or Isabelle-, or PVS-scripts.

− Changes in the proof assistant are only detected at run-time. E.g., if Isabelle

would change the configuration of the simplifier, then it might be the case that

the simplifier invocation in Figure 2 no longer succeeds.

Successful examples of this approach are the two termination proof certifiers

Coccinelle/CiME [7], and CoLoR/Rainbow [3]. Here, Coccinelle and CoLoR are Coq-

libraries on termination of rewrite systems, i.e., they define the notion of termina-

tion, and contain soundness theorems of some termination criteria. And CiME and

Rainbow are tools which turn the certificates from the automated termination tools

into proof scripts, which then apply suitable tactics based on the theorems that are

C. Sternagel, R. Thiemann / Electronic Notes in Theoretical Computer Science 312 (2015) 51–67 55

type-synonym ′a word = ′a list
type-synonym ′a pcp-problem = (′a word × ′a word) set

definition solvable :: ′a pcp-problem ⇒ bool
where
solvable pcp ←→ (∃ pair-list .

set pair-list ⊆ pcp ∧
pair-list 	= [] ∧
concat (map fst pair-list) = concat (map snd pair-list))

type-synonym ′a pcp-problemI = (′a word × ′a word) list

fun pair-of-index :: ′a pcp-problemI ⇒ nat ⇒ ′a word × ′a word
where
pair-of-index pcp i = nth pcp i

type-synonym pcp-certificate = nat list

fun check-solvable :: ′a pcp-problemI ⇒ pcp-certificate ⇒ bool
where
check-solvable pcp solution =
(let pair-list = map (pair-of-index pcp) solution in
list-all (λ i . i < length pcp) solution ∧
solution 	= [] ∧
concat (map fst pair-list) = concat (map snd pair-list))

lemma check-solvable:
assumes check : check-solvable pcp solution
shows solvable (set pcp)

proof −
let ?pair-list = map (pair-of-index pcp) solution
have concat (map fst ?pair-list) = concat (map snd ?pair-list) using check by simp
moreover have ?pair-list 	= [] using check by simp
moreover have set ?pair-list ⊆ set pcp using check by (auto simp add : list-all-iff)
ultimately show ?thesis
unfolding solvable-def by (intro exI [of - ?pair-list]) auto

qed

export-code check-solvable in Haskell

Fig. 3. A First Certified Checker for PCP

available in the libraries.

2.4 Certification via Programs and Proof Assistants

Finally, we also present an approach which combines the best of §§ 2.2 and 2.3. The

basic idea is to write a program check-prop :: input ⇒ certificate ⇒ bool which

efficiently checks certificates as in § 2.2, but is completely written within a proof

assistant. As a result, we can develop a model of the desired property P within the

proof assistant, in combination with a static soundness proof of check-prop:

check-prop input certificate =⇒ P input (1)

Hence, we get the high reliability of § 2.3.
Once this is established one just needs to execute check-prop. This can be done

within the proof assistant via reflection. Alternatively, one can invoke the code

generator of the proof assistant to get check-prop as stand-alone program, which

can then be conveniently and efficiently executed by everyone, without even having

to install the proof assistant. As an example, consider Figure 3 which contains a

checker for solvable PCP instances, where in the last line the full checker is made

available as Haskell code via Isabelle’s code generator [12].

With the described approach, one can overcome all disadvantages which are

C. Sternagel, R. Thiemann / Electronic Notes in Theoretical Computer Science 312 (2015) 51–6756

mentioned at the end of § 2.3, at the cost of not being able to perform shallow

embedding. Therefore, we cannot create suitable datatypes like letters on the fly

as in § 2.3, but instead use a polymorphic type for the alphabet with type variable
′a (we could also have chosen strings or numbers, etc.). As a further consequence,

all routines within check-prop have to be programmed as such, i.e., if we need

an arithmetic solver, we need to program it and prove it correct, and there is no

possibility to just invoke the arithmetic solver that may be available via some tactic

in the proof assistant.

In the running example, let us shortly describe the differences between Figures 2

and 3. The latter solution cannot encode the concrete PCP instance into pair-of-

index but has to pass it as parameter. It further uses a new type for representing

PCP instances in an executable form, namely lists of word-pairs instead of sets

of word-pairs: pcp-problemI. Moreover, conditions that have previously been dis-

charged by the simplifier are now explicit in the check-solvable function, e.g., the

check via list-all that all indices within the solution point to valid word-pairs.

In the remainder of this paper, we will illustrate how to improve this basic

version of a check-prop-program.

3 Error Handling

At the moment, the type of check-prop is input ⇒ certificate ⇒ bool . That is, the

return value just provides one bit of information. Whereas for accepted certificates

this is sufficient, for rejected ones we are often interested in the reason for rejection.

With the current approach (check-solvable from Figure 3), we are even worse off

in case of rejection than in § 2.3 (where we were required to interpret error messages

from the proof assistant), since now we only obtain the resulting value: False.

Hence, our next goal is to extend check-prop in a way that it returns error

messages in case of rejection. Moreover, this should be done without much overhead

and especially it should not clutter the soundness proof of check-prop.

We propose to use the error monad represented by Isabelle’s sum type

datatype ′a + ′b = Inl ′a | Inr ′b

where errors are indicated by Inl and proper results by Inr. Booleans are now

replaced by type ′e check which is an abbreviation for ′e + unit. Then Inr ()

corresponds to True and Inl e to False enriched by the error message e.

More general check functions may also return new results Inr x instead of plain

() in case of success. For example, a function for checking some inference rule might

fail if the preconditions of the inference rule are not met, and return the new proof

obligations arising from applying the rule, otherwise.

In the following, we focus on ′e check which replaces the Boolean return type

of check-prop. We provide the following functionality to ease the transition from

Booleans to the error monad.

• inspection: a function isOK which tests whether a given monadic value is an

C. Sternagel, R. Thiemann / Electronic Notes in Theoretical Computer Science 312 (2015) 51–67 57

fun check-solvable :: ′a pcp-problemI ⇒ pcp-certificate ⇒ string check
where
check-solvable pcp solution = do {
check-all (λ i . i < length pcp) solution
<+? (λ i . ′′index i invalid ′′);

let pair-list = map (pair-of-index pcp) solution;
check (solution 	= []) ′′solution must not be empty ′′;
check (concat (map fst pair-list) =
concat (map snd pair-list)) ′′resulting words are not equal ′′

} <+? (λ s. ′′problem in ensuring satisfiability of PCP : ′′ @ s)

lemma check-solvable:
assumes check : isOK (check-solvable pcp solution)
shows solvable (set pcp)

Fig. 4. A Certified Checker with Error Messages

error or not. Consequently, soundness proofs like (1) are now reformulated as

isOK (check-prop input certificate) =⇒ P input (2)

• assertions: for asserting basic properties, we provide the function check ::bool ⇒
′e ⇒ ′e + unit, where check b e = (if b then Inr () else Inl e), i.e., the asserted

property is coupled with an error message.

• combinators: we provide several combinators like monadic bind (>>=):: ′e + ′a ⇒
(′a ⇒ ′e + ′b) ⇒ ′e + ′b (acting as short-circuited conjunction) and check-all ::

(′a ⇒ bool) ⇒ ′a list ⇒ ′a check (which behaves like ∀ on lists in case of success,

and returns the first element for which the given predicate fails, otherwise). More-

over, specifically for monadic bind, we extended Isabelle’s parser in a way that it

supports Haskell’s do-notation, facilitating writing of readable check functions.

• error messages: there are operators for changing error messages like (<+?):: ′e +
′a ⇒ (′e ⇒ ′f) ⇒ ′f + ′a which takes a function that is used to modify the error

message of the given monadic value. Since modification takes only place in case

of error, this operation has no impact below isOK.

• proving: we configured Isabelle in a way that most of the time the simplifier can

easily eliminate monadic overhead and error message processing.

At this point, it is quite easy to integrate error messages into our PCP checker.

The result is depicted in Figure 4, where @ is Isabelle’s append operator for lists.

Note that the soundness proof remains almost unchanged w.r.t. Figure 3. We

only change the assumption check-solvable pcp solution into isOK (check-solvable

pcp solution). This works since after our setup, Isabelle’s simplifier immediately

translates the new assumption into

(∀ x∈set solution. x < length pcp) ∧
solution �= [] ∧
concat (map fst (map (pair-of-index pcp) solution)) =

concat (map snd (map (pair-of-index pcp) solution))

which speaks again about Boolean connectives and does not contain any monadic

values or error messages at all.

C. Sternagel, R. Thiemann / Electronic Notes in Theoretical Computer Science 312 (2015) 51–6758

type-synonym shows = string ⇒ string

class show =
fixes shows-prec :: nat ⇒ ′a ⇒ shows
and shows-list :: ′a list ⇒ shows

assumes shows-prec p x (y @ z) = shows-prec p x y @ z
and shows-list xs (y @ z) = shows-list xs y @ z

begin
abbreviation shows ≡ shows-prec 0
abbreviation show x ≡ shows x []
end

Fig. 5. A show -class in Isabelle/HOL

4 Readable Error Messages

In the previous section we made use of some rudimentary error messages. However,

these were just static strings. For example, invoking check-solvable on p′ with

certificate [1, 3, 2, 3, 4, 1, 2] yields the output.

Inl ′′problem in ensuring satisfiability of PCP : index i invalid ′′

The “i” in index i invalid is just an uninformative character and does not reflect the

more informative number i that would be available inside check-all via the binding

λ i. Similarly, the resulting words are not displayed if they do not match, and it is

also not shown which PCP instance instance is actually analyzed.

However, to generate all these error messages, we need some functionality to

display arbitrary values. To this end, we introduced a type class show similar to

Haskell’s Show class [13]. The class interface is shown in Figure 5.

Here, shows is the type of functions from strings to strings, which allows for

constant time concatenation. For each instance ′a of the show -class, there is a

function shows-prec that takes a precedence (which may influence parenthesization)

and a value of type ′a. The given value is turned into a string, wrapped inside the

shows type. To display lists in a special form, shows-list can be used, e.g., to allow

special treatment of strings, which in Haskell and Isabelle are just lists of characters.

The show-law which should be satisfied according to the Haskell documentation (and

more or less states that a show-function is not allowed to modify an incoming string)

is enforced in the Isabelle class definition.

In addition to shows-prec and shows-list which have to be defined for each in-

stance, there are the functions shows and show which do not require any precedence

and deliver a string, potentially wrapped into the type shows.

Note that in comparison to Haskell where it suffices to define shows-prec during

instantiation (in which case shows-list gets a default implementation), in Isabelle’s

type-class system, there is no direct possibility to define default implementations.

To this end, we designed a dedicated command standard-shows-list which

automatically generates a definition for shows-list, based on shows-prec, and also

proves the show-law for shows-list, using the one for shows-prec.

For example, the instantiation for the unit type is provided in Figure 6.

In a similar way, we defined show functions for lists, N, Z, Q, and products.

Only for characters, we defined a dedicated shows-list function.

C. Sternagel, R. Thiemann / Electronic Notes in Theoretical Computer Science 312 (2015) 51–67 59

instantiation unit :: show
begin

definition shows-prec p (x ::unit) = shows-string ′′() ′′

lemma shows-prec-append-unit :
shows-prec p (x ::unit) y @ z = shows-prec p x (y @ z)
by (simp add : shows-prec-unit-def)

standard-shows-list shows-prec-append-unit
end

Fig. 6. Instantiating the show -class for the unit-type

fun check-solvable :: (′a :: show) pcp-problemI ⇒ pcp-certificate ⇒ shows check
where
check-solvable pcp solution = do {
check-all (λ i . i < length pcp) solution
<+? (λ i . ′′index ′′ +#+ shows i +@+ shows ′′ invalid ′′);

let pair-list = map (pair-of-index pcp) solution;
check (solution 	= []) (shows ′′solution must not be empty ′′);
let left = concat (map fst pair-list);
let right = concat (map snd pair-list);
check (left = right)
(′′resulting words are not equal : ′′ +#+ shows left +@+ ′′ != ′′ +#+ shows right)

} <+? (λ s. ′′problem in ensuring satisfiability of PCP ′′ +#+ shows pcp +@+ shows-nl +@+ s)

Fig. 7. A Certified Checker with Proper Error Messages

For some other standard types of Isabelle, namely bool, sum, and option, we

have used a more automatic method, similar to Haskell’s deriving Show. To be

more precise, we have written a tactic that automatically defines show functions for

datatypes—printing the constructors of the datatypes with added parentheses—and

proving the required show-law. It is then possible to instantiate the show -class with

the simple command: derive show datatype.

Although we could have used this facility to define the instances for N and prod-

ucts, we did not choose this solution in order to get a nicer presentation. Currently,

show (3,True) results in the string (3,True), whereas if we would have used derive,

the result would have been Pair (Suc (Suc (Suc (zero)))) (True).

Using show it is now possible to add proper error messages into the PCP checker,

cf. Figure 7. Here, +#+ and +@+ are constant time concatenation operators of

type string ⇒ shows ⇒ shows and shows ⇒ shows ⇒ shows, respectively.

When comparing the new definition with the previous one in Figure 4, one

first notices a difference in the type of check-solvable: the type of letters ′a now is

equipped with the type class constraint show. Moreover, the resulting error message

is of type shows instead of string.

Within the definition, clearly the error messages changed from static to dynamic

ones, e.g., the index i is printed, the resulting words are displayed, and even the

whole PCP instance is returned in the error message.

Note that the performed modifications (w.r.t. Figure 4) did not require a single

change in the soundness proof.

C. Sternagel, R. Thiemann / Electronic Notes in Theoretical Computer Science 312 (2015) 51–6760

5 Parsing

Let us shortly recapitulate what we have achieved so far: we can conveniently define

check-prop programs of type input ⇒ certificate ⇒ shows check, which guarantee

semantic properties, deliver readable error messages in case of rejection, and can be

exported into various target languages via code generation.

Hence, for validating some concrete input and certificate, one just needs to trans-

form the input and certificate provided by the automated prover into the types in-

put and certificate that are expected by check-prop. However, these transformations

usually depend on the code generator and the target language: how are the Isabelle

types input and certificate reflected in the generated code, e.g., what are the ex-

act names of the constructors, etc. Therefore, instead of having to build several

parsers—one for each target language—and also maintain them by reflecting for

example changes in the naming scheme of the code generator, we propose to build

only one parser which does not need any maintenance.

The idea is to define the parser directly within the proof assistant. Then this

parser can also be exported to all target languages, and the only interface to the

target language that must be maintained are strings.

Since we are not aware of any automatic parser generators for proof assistants,

i.e., generators which automatically produce parsers within the logic of the proof

assistant, we developed some machinery to ease the manual definition of parsers.

Here, we restrict to inputs and certificates in the structured XML format.

Our support is divided into two steps: we provide functionality to parse strings

into XML-documents (with an accompanying Isabelle datatype to represent XML-

documents), and a set of combinators to ease parsing XML-documents.

5.1 A Parser from Strings to XML

For the first phase, where strings should be converted into XML, we specified a

hand-written parser as a monadic function where the monad is a state-monad with

error, i.e., it captures a state (the remaining list of characters) and either returns

a normal result or ends with an error message. Using the do-notation for monads,

this parser was quite easy to define in a readable way. For example, the most

complicated parser is the one for lists of XML-nodes which is depicted in Figure 8,

where the current state is mostly hidden within the monad and where xml list parser

is just an abbreviation for string ⇒ string + (xml list × string).

However, since for the definition we used Isabelle’s function package [14], we

needed to prove termination of the parser. This required tedious reasoning about the

internal state of the state monad, where we had to prove that some of the auxiliary

parsers actually consume tokens before each recursive invocation of parse-nodes,

and that none of the parsers which are invoked before a recursive call, increases

the length of the token list, which includes parse-nodes itself. Therefore, a simple

structural termination argument is not applicable, and instead we wrote a proof of

160 lines that simultaneously shows termination and a decrease of the length of the

resulting token list.

C. Sternagel, R. Thiemann / Electronic Notes in Theoretical Computer Science 312 (2015) 51–67 61

parse-nodes ts =
(if ts = [] ∨ take 2 ts = ′′</ ′′ then return [] ts
else if hd ts 	= CHR ′′< ′′

then (do {
t ← parse-text ;
ns ← parse-nodes;
return (XML-text (the t) # ns)

})
ts

else (do {
exactly ′′< ′′;
n ← parse-name;
atts ← parse-attributes;
e ← oneof [′′/> ′′, ′′> ′′];
λts ′. if e = ′′/> ′′

then (do {
cs ← parse-nodes;
return (XML n atts [] # cs)

})
ts ′

else (do {
cs ← parse-nodes;
exactly ′′</ ′′;
exactly n;
exactly ′′> ′′;
ns ← parse-nodes;
return (XML n atts cs # ns)

})
ts ′

})
ts)

Fig. 8. A Parser for Lists of XML-Nodes.

As the final result of the first phase, we provide a function doc-of-string of type

string ⇒ string + xmldoc which takes a string and either returns an error message

or an XML-document.

5.2 A Library for Parsing XML

In the second phase, where XML-parsers for input and certificates have to be de-

fined, we support the developer of the certifier by a collection of combinators which

can be used to easily define parsers. In contrast to § 5.1, here we do not use the

function package, but use Isabelle’s partial-function command [15]. The advan-

tage is that this command allows us to define functions without any termination

proof. And as indicated in the previous paragraph, these termination proofs can

become quite tedious even for simple parsers; in fact, before using partial-function

we often just postulated termination of various parsers as axioms. However, there

is one prerequisite for using partial-function: the functions have to be monadic,

and monotone w.r.t. some pointed complete partial order with a least element ⊥,

which is required to specify the behavior in case of nontermination.

In principle the error monad ′a + ′b would be an appropriate return type for

the XML parsers. However, this type does not satisfy the preconditions, since it

does not possess a unique least element ⊥, as it admits different error messages.

To this end, we defined a dedicated monadic type ′a +⊥ ′b with constructors

Left ′a (for errors), Right ′b (for results), and ⊥ (for nontermination). Moreover,

changing results or error messages are monotone operations on this type.

To conveniently specify monadic XML parsers on this type we provide several

C. Sternagel, R. Thiemann / Electronic Notes in Theoretical Computer Science 312 (2015) 51–6762

<?��� �����	
="1.0"?>
<?���-stylesheet type="text/xsl" href="pcp.xsl"?>
<certificate >

<pcp>
<pair>

<lhs><sym>A</sym></lhs>
<rhs><sym>A</sym><sym>B</sym><sym>A</sym></rhs>

</pair>
<pair>

<lhs><sym>A</sym><sym>B</sym></lhs>
<rhs><sym>B</sym><sym>B</sym></rhs>

</pair>
<pair>

<lhs><sym>B</sym><sym>A</sym><sym>A</sym></lhs>
<rhs><sym>A</sym><sym>A</sym></rhs>

</pair>
</pcp>
<solution >

<idx>0</idx><idx>2</idx><idx>1</idx><idx>2</idx>
</solution >

</certificate >

Fig. 9. The PCP Instance p and its Solution in XML

definition certificate-of-xml :: xml ⇒ string +⊥ pcp-certificate
where
certificate-of-xml = Xmlt .many ′′solution ′′ (Xmlt .nat ′′idx ′′) id

partial-function (sum-bot) pcp-of-xml :: xml ⇒ string +⊥ string pcp-problemI
where
[code]: pcp-of-xml xml =
Xmlt .many ′′pcp ′′
(Xmlt .pair ′′pair ′′
(Xmlt .many ′′lhs ′′ (Xmlt .text ′′sym ′′) id)
(Xmlt .many ′′rhs ′′ (Xmlt .text ′′sym ′′) id)
Pair) id xml

definition
parse-input-and-certificate :: string ⇒ string +⊥ (string pcp-problemI × pcp-certificate)

where
parse-input-and-certificate s =
(case Xml .doc-of-string s of
Inl e ⇒ error e

| Inr doc ⇒ Xmlt .pair ′′certificate ′′ pcp-of-xml certificate-of-xml Pair (root-node doc))

definition certifier :: string ⇒ string +⊥ string
where
certifier s = do {

(pcp, c) ← parse-input-and-certificate s;
(case (check-solvable pcp c) of
Inl e ⇒ error (e ′′′′)

| Inr - ⇒ return ′′certified that pcp is solvable ′′)
}

Fig. 10. A Parser and Certifier for Solvability of PCP

basic parsers (for strings, numbers, etc.) as well as combinators like pair or many

which combine two parsers or lift a parser for single XML nodes to one over lists of

XML nodes. Although the definitions of these combinators are straightforward, we

would like to mention that setting up the combinators was not a completely trivial

task: we had to configure Isabelle in a way that the required monotonicity proofs

of parsers defined by the combinators are automatic.

For PCP, an XML-schema and parser is easily setup using the combinators, cf.

Figures 9 and 10. The former provides the certificate for the PCP instance p in

XML format, and the latter shows the parser as well as the function certifier which

is the final certifier that invokes all required components.

C. Sternagel, R. Thiemann / Electronic Notes in Theoretical Computer Science 312 (2015) 51–67 63

������ Main (main) ���	�

���	� Certifier -- the certifier

���	�
�����.Environment -- for getArgs

���	�
�����.�� -- for file reading

���	�
�����.Exit -- for error codes

main = �� args <- ����	��
���� �	�����.������ args ��

1 -> �� input <- 	����
�� (args !! 0)
start input

_ -> �		�	 "usage:�pcp�certificate.xml"

start input =
���� certifier input ��

Sumbot (Inr message) ->
�� ���
�	�� "ACCEPT"

���
�	�� message
��
�
������

Sumbot (Inl message) ->
�� ���
�	�� "REJECT"

����
�	�� ����		 message
��
��
�� (ExitFailure 1)

Fig. 11. A Haskell Wrapper to Invoke the Certifier

First, the parsers for solutions and PCP instances are defined. Whereas the

former, certificate-of-xml is a standard (non-recursive) definition, the latter pcp-

of-xml is defined via partial-function and could use recursion without requiring

termination; however, the format for PCP is so simple that no recursion is required.

Afterwards, parse-input-and-certificate combines the string-to-XML parser with

the XML-parsers to yield the full parser from strings to pairs of PCP instance and

solution. This is also the place, where a conversion from the error monad ′a + ′b
to its variant ′a +⊥ ′b with bottom element takes place.

Finally, the full certifier is defined which just parses the input string s, invokes

the check-solvable function and converts again between the two kinds of error mon-

ads. Moreover, the error message e of type shows is converted into a string, by

starting the evaluation via invocation with the empty string ′′′′ as argument.

It is now quite easy to wrap the certifier function inside some glue-code in the

target language in order to get a stand-alone program.

For example, Figure 11 shows the full Haskell program that is used as wrapper

to invoke the certifier for PCP, where the certifier was exported via:

export-code certifier sumbot Inl Inr in Haskell module-name Certifier

This command exports the main certifier as Haskell program, in combination with

the constructors sumbot, Inl, and Inr which are required for pattern matching the

result of type string +⊥ string.

6 Soundness

Now that we have the fully executable certifier, we also want to have some soundness

guarantees about it. Recall that the return type of certifier is string +⊥ string

with constructors ⊥, Left, and Right. For the success-case we can easily prove the

C. Sternagel, R. Thiemann / Electronic Notes in Theoretical Computer Science 312 (2015) 51–6764

following lemma inside the proof assistant (here specialized to our PCP certifier).

certifier s = Right m =⇒
∃ pcp c. solvable (set pcp) ∧ parse-input-and-certificate s = Right (pcp,c)

(3)

The problem in (3) is the brittle connection between the input string s and the

semantic object pcp: the only connection between s and pcp is the parser. Hence, if

one does not trust the parser and has nothing proven about it, then (3) is reduced

to the following theorem.

certifier s = Right m =⇒ ∃ pcp. solvable (set pcp) (4)

This implication clearly lacks any connection between s and pcp, i.e., if the certifier

accepts s, one only knows that some pcp is solvable, which is not necessarily the

PCP instance that is encoded in s. And indeed, if the parser would be written in a

way that it always returns the trivial PCP instance {(A,A)} with solution [0], then

the certifier will never reject any proof.

Whereas a full correctness proof of the parser might be possible, there definitely

is a simpler way to ensure soundness, namely via show functions. One can for

example replace the last return-statement in Figure 10 by return (show pcp). Then

the soundness theorem is the following one

certifier s = Right m =⇒ ∃ pcp. solvable (set pcp) ∧ m = show pcp (5)

where at least the returned message m is related to the semantic object, pcp, via the

show function show. Then the user of the certifier can inspect whether the string

obtained from pcp corresponds to the intended input that is given in s. Clearly,

here one has to trust the show function, but usually this is less complex than the

parser and hence, also more reliable.

Instead of a human inspection we also integrated a way for an automatic com-

parison that the parsed input corresponds to the given input string. To this end,

we make use of an XML show function to-xml which outputs the semantic object

pcp as an XML-string. Then one can also easily check whether the string obtained

from the parsed input is contained in the original input s, i.e., in (4) and (5) one

gets the additional guarantee:

∃ before input after. s = before @ input @ after ∧ input =w to-xml pcp (6)

Here, the input string s is decomposed into three parts where usually before is

some XML preamble, after contains the certificate, and where =w is pure string-

comparison modulo whitespace.

Of course, if one enforces such a strict comparison via strings, then the input

XML string has to be normalized in some way, e.g., it must not contain comments,

since the show function to-xml will not be able to invent the right comments. More-

over, there must be consensus about the input XML string and the show function,

whether to print <foo></foo> or <foo/>, etc.

C. Sternagel, R. Thiemann / Electronic Notes in Theoretical Computer Science 312 (2015) 51–67 65

7 Conclusion

We presented a framework to develop stand-alone certifiers, with a simple certifier

for PCP as an example. To adapt it to other certification problems, of course one has

to adapt the major soundness proofs, but the method of integrating error messages,

and the theories on parsing, show functions, etc. should all be easily reusable.

Based on this schema we already developed CeTA, a certifier which supports

(non)termination proofs [26], (non)confluence proofs [16], and complexity proofs

[22]. Each of the soundness results is in the form of (4) in combination with (6).

We also considered safety properties like →∗(initial-states) ∩ bad-states = ∅,

stating that no bad state is reachable via evaluation with →. Here, a prototype

certifier is available which accepts certificates in the form of tree automata which

over-approximate the set of reachable states, cf. [8,9].

Acknowledgments.

We thank the anonymous reviewers for their helpful comments. The authors are

listed in alphabetical order regardless of individual contributions or seniority.

References

[1] Alkassar, E., S. Böhme, K. Mehlhorn and C. Rizkallah, Verification of certifying computations, in:
Proc. CAV, LNCS 6806, 2011, pp. 67–82, doi:10.1007/978-3-642-22110-1_7.

[2] Bertot, Y. and P. Castéran, “Interactive Theorem Proving and Program Development; Coq’Art: The
Calculus of Inductive Constructions,” TCS Texts, Springer, 2004, doi:10.1007/978-3-662-07964-5.

[3] Blanqui, F. and A. Koprowski, CoLoR: a Coq library on well-founded rewrite relations and its
application to the automated verification of termination certificates, Math. Struct. Comp. Sci. 21
(2011), pp. 827–859, doi:10.1017/S0960129511000120.

[4] Blum, M. and S. Kannan, Designing programs that check their work, Journal of the ACM 42 (1995),
doi:10.1145/200836.200880.

[5] Böhme, S. and T. Nipkow, Sledgehammer: Judgement day, in: J. Giesl and R. Hähnle, editors, Proc.
IJCAR, LNCS 6173 (2010), pp. 107–121, doi:10.1007/978-3-642-14203-1_9.

[6] Codish, M., C. Fuhs, J. Giesl and P. Schneider-Kamp, Lazy abstraction for size-change termination,
in: Proc. LPAR, LNCS 6397 (2010), pp. 217–232, doi:10.1007/978-3-642-16242-8_16.

[7] Contejean, É., P. Courtieu, J. Forest, O. Pons and X. Urbain, Automated certified proofs with CiME 3,
in: Proc. 22nd RTA, LIPIcs 10 (2011), pp. 21–30, doi:10.4230/LIPIcs.RTA.2011.21.

[8] Felgenhauer, B. and R. Thiemann, Reachability analysis with state-compatible automata, in: LATA,
LNCS 8370, 2014, pp. 347–359, doi:10.1007/978-3-319-04921-2_28.

[9] Genet, T., Decidable approximations of sets of descendants and sets of normal forms, in: Proc. RTA,
LNCS 1379, 1998, pp. 151–165, doi:10.1007/BFb0052368.

[10] Gordon, M., From LCF to HOL: a short history, in: Proof, Language, and Interaction, Essays In
Honour of Robin Milner (2000), pp. 169–186.

[11] Gordon, M. J. C., R. Milner and C. P. Wadsworth, “Edinburgh LCF,” LNCS 78, Springer, 1979,
doi:10.1007/3-540-09724-4.

[12] Haftmann, F. and T. Nipkow, Code generation via higher-order rewrite systems, in: Proc. 10th FLOPS,
LNCS 6009 (2010), pp. 103–117, doi:10.1007/978-3-642-12251-4_9.

[13] Hudak, P., J. Peterson and J. H. Fasel, A gentle introduction to Haskell, SIGPLAN Notices 27
(1992), original version at http://doi.acm.org/10.1145/130697.130698, updated version at https:
//www.haskell.org/tutorial/.

C. Sternagel, R. Thiemann / Electronic Notes in Theoretical Computer Science 312 (2015) 51–6766

http://dx.doi.org/10.1007/978-3-642-22110-1_7
http://dx.doi.org/10.1007/978-3-662-07964-5
http://dx.doi.org/10.1017/S0960129511000120
http://dx.doi.org/10.1145/200836.200880
http://dx.doi.org/10.1007/978-3-642-14203-1_9
http://dx.doi.org/10.1007/978-3-642-16242-8_16
http://dx.doi.org/10.4230/LIPIcs.RTA.2011.21
http://dx.doi.org/10.1007/978-3-319-04921-2_28
http://dx.doi.org/10.1007/BFb0052368
http://dx.doi.org/10.1007/3-540-09724-4
http://dx.doi.org/10.1007/978-3-642-12251-4_9
http://doi.acm.org/10.1145/130697.130698
https://www.haskell.org/tutorial/
https://www.haskell.org/tutorial/

[14] Krauss, A., Partial and nested recursive function definitions in higher-order logic, J. Autom. Reasoning
44 (2010), pp. 303–336, doi:10.1007/s10817-009-9157-2.

[15] Krauss, A., Recursive definitions of monadic functions, in: Proc. of the Workshop on Partiality
and Recursion in Interactive Theorem Proving (PAR 2010), Electronic Proceedings in Theoretical
Computer Science 43, 2010, pp. 1–13.

[16] Nagele, J. and R. Thiemann, Certification of confluence proofs using CeTA, in: Proc. IWC, 2014,
available at http://cl-informatik.uibk.ac.at/users/thiemann/paper/IWC14CeTA.pdf.

[17] Nipkow, T., L. C. Paulson and M. Wenzel, “Isabelle/HOL – A Proof Assistant for Higher-Order Logic,”
LNCS 2283, Springer, 2002, doi:10.1007/3-540-45949-9.

[18] Owre, S., J. M. Rushby and N. Shankar, PVS: A prototype verification system, in: Proc. CADE, LNAI
607, 1992, pp. 748–752, doi:10.1007/3-540-55602-8_217.

[19] Paulson, L. C., “Logic and Computation: Interactive Proof with Cambridge LCF,” Cambridge
University Press, 1987.

[20] Post, E. L., A variant of a recursively unsolvable problem, Bull. Amer. Math. Soc. 52 (1946), doi:10.
1090/S0002-9904-1946-08555-9.

[21] Sternagel, C. and R. Thiemann, Certification monads, Archive of Formal Proofs (2014), http://afp.
sf.net/entries/Certification_Monads.shtml, Formal proof development.

[22] Sternagel, C. and R. Thiemann, Formalizing monotone algebras for certification of termination and
complexity proofs, in: Proc. RTA-TLCA, LNCS 8560, 2014, pp. 441–455.

[23] Sternagel, C. and R. Thiemann, Haskell’s show-class in isabelle/hol, Archive of Formal Proofs (2014),
http://afp.sf.net/entries/Show.shtml, Formal proof development.

[24] Sternagel, C. and R. Thiemann, Xml, Archive of Formal Proofs (2014), http://afp.sf.net/entries/
XML.shtml, Formal proof development.

[25] Thiemann, R., G. Allais and J. Nagele,On the formalization of termination techniques based on multiset
orderings, in: Proc. RTA, LIPIcs 15, 2012, pp. 339–354, doi:10.4230/LIPIcs.RTA.2012.339.

[26] Thiemann, R. and C. Sternagel, Certification of termination proofs using CeTA, in: Proc. 22nd TPHOLs,
LNCS 5674 (2009), pp. 452–468, doi:10.1007/978-3-642-03359-9_31.

C. Sternagel, R. Thiemann / Electronic Notes in Theoretical Computer Science 312 (2015) 51–67 67

http://dx.doi.org/10.1007/s10817-009-9157-2
http://cl-informatik.uibk.ac.at/users/thiemann/paper/IWC14CeTA.pdf
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.1007/3-540-55602-8_217
http://dx.doi.org/10.1090/S0002-9904-1946-08555-9
http://dx.doi.org/10.1090/S0002-9904-1946-08555-9
http://afp.sf.net/entries/Certification_Monads.shtml
http://afp.sf.net/entries/Certification_Monads.shtml
http://afp.sf.net/entries/Show.shtml
http://afp.sf.net/entries/XML.shtml
http://afp.sf.net/entries/XML.shtml
http://dx.doi.org/10.4230/LIPIcs.RTA.2012.339
http://dx.doi.org/10.1007/978-3-642-03359-9_31

	Introduction
	Certification
	Human Inspection
	Certification via Programs
	Certification via Proof Assistants
	Certification via Programs and Proof Assistants

	Error Handling
	Readable Error Messages
	Parsing
	A Parser from Strings to XML
	A Library for Parsing XML

	Soundness
	Conclusion
	References

