
Certification of Termination Proofs using CeTA?

René Thiemann and Christian Sternagel

Institute of Computer Science, University of Innsbruck, Austria
{rene.thiemann|christian.sternagel}@uibk.ac.at

Abstract. There are many automatic tools to prove termination of term
rewrite systems, nowadays. Most of these tools use a combination of
many complex termination criteria. Hence generated proofs may be of
tremendous size, which makes it very tedious (if not impossible) for hu-
mans to check those proofs for correctness.
In this paper we use the theorem prover Isabelle/HOL to automatically
certify termination proofs. To this end, we first formalized the required
theory of term rewriting including three major termination criteria: de-
pendency pairs, dependency graphs, and reduction pairs. Second, for each
of these techniques we developed an executable check which guarantees
the correct application of that technique as it occurs in the generated
proofs. Moreover, if a proof is not accepted, a readable error message is
displayed. Finally, we used Isabelle’s code generation facilities to gener-
ate a highly efficient and certified Haskell program, CeTA, which can be
used to certify termination proofs without even having Isabelle installed.

1 Introduction

Termination provers for term rewrite systems (TRSs) became more and more
powerful in the last years. One reason is that a proof of termination no longer
is just some reduction order which contains the rewrite relation of the TRS.
Currently, most provers construct a proof in the dependency pair framework
which allows to combine basic termination techniques in a flexible way. Then
a termination proof is a tree where at each node a specific technique has been
applied. So instead of stating the precedence of some lexicographic path order
(LPO) or giving some polynomial interpretation, current termination provers
return proof trees which reach sizes of several megabytes. Hence, it would be too
much work to check by hand whether these trees really form a valid proof.

That we cannot blindly trust the output of termination provers is regularly
demonstrated: Every now and then some tool delivers a faulty proof for some
TRS. But most often this is only detected if there is some other prover giving
the opposite answer on the same TRS, i.e., that it is nonterminating. To solve
this problem, in the last years two systems have been developed which auto-
matically certify or reject a generated termination proof: CiME/Coccinelle [4,6]
and Rainbow/CoLoR [3] where Coccinelle and CoLoR are libraries on rewriting for
Coq (http://coq.inria.fr), and CiME and Rainbow are used to convert proof
trees into Coq-proofs which heavily rely on the theorems within those libraries.
? This research is supported by FWF (Austrian Science Fund) project P18763.

http://coq.inria.fr


proof tree proof.v accept/failure
CiME/Rainbow Coq + Coccinelle/CoLoR

In this paper we present a new combination, CeTA/IsaFoR, to automatically
certify termination proofs. Note that the system design has two major differ-
ences in comparison to the two existing ones. First, our library IsaFoR (Isabelle
Formalization of Rewriting, containing 173 definitions, 863 theorems, and 269
functions) is written for the theorem prover Isabelle/HOL1 [16] and not for Coq.

Second, and more important, instead of generating for each proof tree a new
Coq-proof using the auxiliary tools CiME/Rainbow, our library IsaFoR contains
several executable “check”-functions (within Isabelle) for each termination tech-
nique we formalized. We have formally proven that whenever such a check is
accepted, then the termination technique is applied correctly. Hence, we do not
need to create an individual Isabelle-proof for each proof tree, but just call the
“check”-function for checking the whole tree (which does nothing else but calling
the separate checks for each termination technique occurring in the tree). This
second difference has several advantages:

• In the other two systems, whenever a proof is not accepted, the user just
gets a Coq-error message that some step in the generated Coq-proof failed. In
contrast, our functions deliver error messages using notions of term rewriting.
• Since the analysis of the proof trees in IsaFoR is performed by executable

functions, we can just apply Isabelle’s code-generator [11] to create a certified
Haskell program [17], CeTA, leading to the following workflow.

IsaFoR Haskell program CeTA
Isabelle Haskell compiler

proof tree accept/error message
CeTA

Hence, to use our certifier CeTA (Certified Termination Analysis) you do not
have to install any theorem prover, but just execute some binary. Moreover,
the runtime of certification is reduced significantly. Whereas the other two
approaches take more than one hour to certify all (≤ 580) proofs during
the last certified termination competition, CeTA needs less than two minutes
for all (786) proofs that it can handle. Note that CeTA can also be used for
modular certification. Each single application of a termination technique can
be certified—just call the corresponding Haskell-function.

Concerning the techniques that have been formalized, the other two systems
offer techniques that are not present in IsaFoR, e.g., LPO or matrix interpreta-
tions. Nevertheless, we also feature one new technique that has not been certified
so far. Whereas currently only the initial dependency graph estimation of [1] has
been certified, we integrated the most powerful estimation which does not re-
quire tree automata techniques and is based on a combination of [9,12] where
the function tcap is required. Initial problems in the formalization of tcap led to
the development of etcap, an equivalent but more efficient version of tcap which
1 In the remainder of this paper we just write Isabelle instead of Isabelle/HOL.



is also beneficial for termination provers. Replacing tcap by etcap within the
termination prover TTT2 [14] reduced the time to estimate the dependency graph
by a factor of 2. We will also explain, how to reduce the number of edges that
have to be inspected when checking graph decompositions.

Another benefit of our system is its robustness. Every proof which uses weaker
techniques than those formalized in IsaFoR is accepted. For example, termination
provers can use the graph estimation of [1], as it is subsumed by our estimation.

The paper is structured as follows. In Sect. 2 we recapitulate the required
notions and notations of term rewriting and the dependency pair framework
(DP framework). Here, we also introduce our formalization of term rewriting
within IsaFoR. In Sect. 3–6 we explain our certification of the four termination
techniques we currently support: dependency pairs (Sect. 3), dependency graph
(Sect. 4), reduction pairs (Sect. 5), and combination of proofs in the dependency
pair framework (Sect. 6). However, to increase readability we abstract from our
concrete Isabelle code and present the checks for the techniques on a higher
level. How we achieved readable error-messages while at the same time having
maintainable Isabelle proofs is the topic of Sect. 7. We conclude in Sect. 8 where
we show how CeTA is created from IsaFoR and where we give experimental data.

IsaFoR, CeTA, and all details about our experiments are available at CeTA’s
website http://cl-informatik.uibk.ac.at/software/ceta.

2 Formalizing Term Rewriting

We assume some basic knowledge of term rewriting [2]. Variables are denoted
by x, y, z, etc., function symbols by f , g, h, etc., terms by s, t, u, etc., and
substitutions by σ, µ, etc. Instead of f(t1, . . . , tn) we write f(tn). The set of all
variables occurring in term t is denoted by Var(t). By T (F ,V) we denote the set
of terms over function symbols from F and variables from V.

In the following we give an overview of our formalization of term rewriting
in IsaFoR. Our main concern is termination of rewriting. This property—also
known as strong normalization—can be stated without considering the struc-
ture of terms. Therefore it is part of our Isabelle theory AbstractRewriting.
An abstract rewrite system (ARS) is represented by the type (’a×’a)set in Is-
abelle. Strong normalization (SN) of a given ARS A is equivalent to the absence
of an infinite sequence of A-steps. On the lowest level we have to link our notion
of strong normalization to the notion of well-foundedness as defined in Isabelle.
This is an easy lemma since the only difference is the orientation of the relation,
i.e., SN(A) = wf(A−1). At this point we can be sure that our notion of strong
normalization is valid.

Now we come to the level of first-order terms (in theory Term):

datatype (’f,’v)"term" = Var ’v | Fun ’f "(’f,’v)term list"

Many concepts related to terms are formalized in Term, e.g., an induction scheme
for terms (as used in textbooks), substitutions, contexts, the (proper) subterm
relation etc.

By restricting the elements of some ARS to terms, we reach the level of TRSs

http://cl-informatik.uibk.ac.at/software/ceta


(in theory Trs), which in our formalization are just binary relations over terms.

Example 1. As an example, consider the following TRS, encoding rules for sub-
traction and division on natural numbers.

minus(x, 0)→ x div(0, s(y))→ 0

minus(s(x), s(y))→ minus(x, y) div(s(x), s(y))→ s(div(minus(x, y), s(y)))

Given a TRS R, (`, r) ∈ R means that ` is the lhs and r the rhs of a rule in
R (usually written as `→ r ∈ R). The rewrite relation induced by a TRS R is
denoted by →R and has the following definition in IsaFoR:
Definition 2. Term s rewrites to t by R, iff there are a context C, a substitu-
tion σ, and a rule `→ r ∈ R such that s = C[`σ] and t = C[rσ].

Note that this section contains the only parts where you have to trust our
formalization, i.e., you have to believe that SN(→R) as defined in IsaFoR really
describes “R is terminating.”

3 Certifying Dependency Pairs

Before we introduce dependency pairs [1] formally and give some details about
our Isabelle formalization, we recapitulate the ideas that led to the final definition
(including a refinement proposed by Dershowitz [7]).

For a TRS R, strong normalization means that there is no infinite derivation
t1 →R t2 →R t3 →R · · · . Additionally we can concentrate on derivations, where
t1 is minimal in the sense that all its proper subterms are terminating. Such
terms are called minimal nonterminating. The set of all minimally nonterminat-
ing terms with respect to a TRS R is denoted by T ∞R . Observe that for every
term t ∈ T ∞R there is an initial part of an infinite derivation having a specific
shape: A (possibly empty) derivation taking place below the root, followed by an
application of some rule ` → r ∈ R at the root, i.e., t >ε∗→R `σ

ε→R rσ, for some
substitution σ. Furthermore, since rσ is nonterminating, there is some subterm
u of r, such that uσ ∈ T ∞R , i.e., rσ = C[uσ]. Then the same reasoning can be
used to get a root reduction of uσ, . . . , cf. [1].

To get rid of the additional contexts C a new TRS, DP(R), is built.
Definition 3. The set DP(R) of dependency pairs of R is defined as follows:
For every rule `→ r ∈ R, and every subterm u of r such that u is not a proper
subterm of ` and such that the root of u is defined,2 `] → u] is contained in
DP(R). Here t] is the same as t except that the root of t is marked with the
special symbol ].

Example 4. The dependency pairs for the TRS from Ex. 1 consist of the rules

M(s(x), s(y))→ M(x, y) (MM) D(s(x), s(y))→ M(x, y) (DM)
D(s(x), s(y))→ D(minus(x, y), s(y)) (DD)

where we write M instead of minus] and D instead of div] for brevity.
2 A function symbol f is defined (w.r.t. R) if there is some rule f(. . . ) → r ∈ R.



Note that after switching to ’]’-terms, the derivation from above can be written
as t] →∗R `]σ →DP(R) u

]σ. Hence every nonterminating derivation starting at
a term t ∈ T ∞R can be transformed into an infinite derivation of the following
shape where all →DP(R)-steps are applied at the root.

t] →∗R s]
1 →DP(R) t

]
1 →∗R s]

2 →DP(R) t
]
2 →∗R · · · (1)

Therefore, to prove termination of R it suffices to prove that there is no such
derivation. To formalize DPs in Isabelle we modify the signature such that every
function symbol now appears in a plain version and in a ]-version.

datatype ’f shp = Sharp ’f ("_]") | Plain ’f ("_@")

Sharping a term is done via

fun plain :: "(’f,’v)term => (’f shp,’v)term"
where "plain(Var x) = Var x"

| "plain(Fun f ss) = Fun f@ (map plain ss)"

fun sharp :: "(’f,’v)term => (’f shp,’v)term"
where "sharp(Var x) = Var x"

| "sharp(Fun f ss) = Fun f] (map plain ss)"

Thus t] in Def. 3 is the same as sharp(t). Since the function symbols in DP(R)
are of type ’f shp and the function symbols ofR are of type ’f, it is not possible
to use the same TRS R in combination with DP(R). Thus, in our formalization
we use the lifting ID—that just applies plain to all lhss and rhss in R.

Considering this technicalities and omitting the initial derivation t] →∗R s]
1

from the derivation (1), we obtain

s]
1 →DP(R) t

]
1 →∗ID(R) s

]
2 →DP(R) t

]
2 →∗ID(R) · · ·

and hence a so called infinite (DP(R), ID(R))-chain. Then the corresponding DP
problem (DP(R), ID(R)) is called to be not finite, cf. [8]. Notice that in IsaFoR a
DP problem is just a pair of two TRSs over arbitrary signatures—similar to [8].

In IsaFoR an infinite chain3 and finite DP problems are defined as follows.

fun ichain where "ichain(P,R) s t σ = (∀i.
(s i,t i) ∈ P ∧ (t i)·(σ i) →∗R (s(i+1))·(σ(i+1))"

fun finite_dpp where

"finite_dpp(P,R) = (¬(∃s t σ. ichain (P,R) s t σ))"

where ‘t · σ’ denotes the application of substitution σ to term t.
We formally established the connection between strong normalization and

finiteness of the initial DP problem (DP(R), ID(R)). Although this is a well-
known theorem, formalizing it in Isabelle was a major effort.

Theorem 5. wf_trs(R) ∧ finite_dpp(DP(R), ID(R)) −→ SN(→R).

3 We also formalized minimal chains, but here only present chains for simplicity.



The additional premise wf_trs(R) ensures two well-formedness properties for
R, namely that for every `→ r ∈ R, ` is not a variable and that Var(r) ⊆ Var(`).

At this point we can obviously switch from the problem of proving SN(→R)
for some TRS R, to the problem of proving finite_dpp(DP(R), ID(R)), and
thus enter the realm of the DP framework [8]. Here, the current technique is to
apply so-called processors to a DP problem, in order to get a set of simpler DP
problems. This is done recursively, until the leafs of the so built tree consist of DP
problems with empty P-components (and therefore are trivially finite). For this
to be correct, the applied processors need to be sound, i.e., every processor Proc
has to satisfy the implication

(∀p ∈ Proc(P,R). finite_dpp(p)) −→ finite_dpp(P,R)

for every input. The termination techniques that will be introduced in the fol-
lowing sections are all such (sound) processors.

So much to the underlying formalization. Now we will present how the check
in IsaFoR certifies a set of DPs P that was generated by some termination tool
for some TRS R. To this end, the function checkDPs is used.

checkDPs(P,R) = checkWfTRS(R) ∧ computeDPs(R) ⊆ P
Here checkWfTRS checks the two well-formedness properties mentioned above
(the difference between wf_trs and checkWfTRS is that only the latter is exe-
cutable) and computeDPs uses Def. 3, which is currently the strongest definition
of DPs. To have a robust system, the check does not require that exactly the set
of DPs w.r.t. to Def. 3 is provided, but any superset is accepted. Hence we are
also able to accept proofs from termination tools that use a weaker definition of
DP(R). The soundness result of checkDPs is formulated as follows in IsaFoR.

Theorem 6. If checkDPs(P,R) is accepted then finiteness of (P, ID(R)) im-
plies SN(→R).

4 Certifying the Dependency Graph Processor

One important processor to prove finiteness of a DP problem is based on the
dependency graph [1,8]. The dependency graph of a DP problem (P,R) is a
directed graph G = (P, E) where (s → t, u → v) ∈ E iff s → t, u → v is a
(P,R)-chain. Hence, every infinite (P,R)-chain corresponds to an infinite path
in G and thus, must end in some strongly connected component (SCC) S of G,
provided that P contains only finitely many DPs. Dropping the initial DPs of
the chain results in an infinite (S,R)-chain.4 Hence, if for all SCCs S of G the DP
problem (S,R) is finite, then (P,R) is finite. In practice, this processor allows
to prove termination of each block of mutual recursive functions separately.

To certify an application of the dependency graph processor there are two
main challenges. First of all, we have to certify that a valid SCC decomposition
of G is used, a purely graph-theoretical problem. Second, we have to generate the
edges of G. Since the dependency graph G is in general not computable, usually
4 We identify an SCC S with the set of nodes S within that SCC.



estimated graphs G′ are used which contain all edges of the real dependency
graph G. Hence, for the second problem we have to implement and certify one
estimation of the dependency graph.

Notice that there are various estimations around and that the result of an
SCC decomposition depends on the estimation that is used. Hence, it is not
a good idea to implement the strongest estimation and then match the result
of our decomposition against some given decomposition: problems arise if the
termination prover used a weaker estimation and thus obtained larger SCCs.

Therefore, in the upcoming Sect. 4.1 about graph algorithms we just speak
of decompositions where the components do not have to be SCCs. Moreover, we
will also elaborate on how to minimize the number of tests (s→ t, u→ v) ∈ E.
The reason is that in Sect. 4.2 we implemented one of the strongest dependency
graph estimations where the test for an edge can become expensive. In Sect. 4.3
we finally show how to combine the results of Sections 4.1 and 4.2.

4.1 Certifying Graph Decompositions

Instead of doing an SCC decomposition of a graph within IsaFoR we base our
check on the decomposition that is provided by the termination prover. Essen-
tially, we demand that the set of components is given as a list 〈C1, . . . , Ck〉 in
topological order where the component with no incoming edges is listed first.
Then we aim at certifying that every infinite path must end in some Ci. Note
that the general idea of taking the topological sorted list as input was already
publicly mentioned at the “Workshop on the certification of termination proofs”
in 2007. In the following we present how we filled the details of this general idea.

The main idea is to ensure that all edges (p, q) ∈ E correspond to a step
forward in the list 〈C1, . . . , Ck〉, i.e., (p, q) ∈ Ci × Cj where i ≤ j. However,
iterating over all edges of G will be costly, because it requires to perform the test
(p, q) ∈ E for all possible edges (p, q) ∈ P ×P. To overcome this problem we do
not iterate over the edges but over P. To be more precise, we check that

∀(p, q) ∈ P × P. (∃i ≤ j. (p, q) ∈ Pi × Pj) ∨ (p, q) /∈ E (2)

where the latter part of the disjunction is computed only on demand. Thus, only
those edges have to be computed, which would contradict a valid decomposition.

Example 7. Consider the set of nodes P = {(DD), (DM), (MM)}. Suppose that
we have to check a decomposition of P into L = 〈{(DD)}, {(DM)}, {(MM)}〉 for
some graph G = (P, E). Then our check has to ensure that the dashed edges in
the following illustration do not belong to E.

(DD) (DM) (MM)

It is easy to see that (2) is satisfied for every list of SCCs that is given
in topological order. What is even more important, whenever there is a valid
SCC decomposition of G, then (2) is also satisfied for every subgraph. Hence,
regardless of the dependency graph estimation a termination prover might have
used, we accept it, as long as our estimation delivers less edges.



However, the criterion is still too relaxed, since we might cheat in the input
by listing nodes twice. Consider P = {p1, . . . , pm} where the corresponding
graph is arbitrary and L = 〈{p1}, . . . , {pm}, {p1}, . . . , {pm}〉. Then trivially (2)
is satisfied, because we can always take the source of edge (pi, pj) from the first
part of L and the target from the second part of L. To prevent this kind of
problem, our criterion demands that the sets Ci in L are pairwise disjoint.

Before we formally state our theorem, there is one last step to consider,
namely the handling of singleton nodes which do not form an SCC on their own.
Since we cannot easily infer at what position these nodes have to be inserted in
the topological sorted list—this would amount to do an SCC decomposition on
our own—we demand that they are contained in the list of components.5

To distinguish a singleton node without an edge to itself from a “real SCC”,
we require that the latter ones are marked. Then condition (2) is extended in a
way that unmarked components may have no edge to themselves. The advantage
of not marking a component is that our IsaFoR-theorem about graph decompo-
sition states that every infinite path will end in some marked component, i.e.,
here the unmarked components can be ignored.

Theorem 8. Let L = 〈C1, . . . , Ck〉 be a list of sets of nodes, some of them
marked, let G = (P, E) be a graph, let α be an infinite path of G. If

• ∀(p, q) ∈ P × P. (∃i < j. (p, q) ∈ Ci × Cj) ∨ (∃i. (p, q) ∈ Ci × Ci ∧
Ci is marked) ∨ (p, q) /∈ E and
• ∀i 6= j. Ci ∩ Cj = ∅

then there is some suffix β of α and some marked Ci such that all nodes of β
belong to Ci.

Example 9. If we continue with example Ex. 7 where only components {(MM)}
and {(DD)} are marked, then our check also analyzes that G contains no edge
from (DM) to itself. If it succeeds, every infinite path will in the end only contain
nodes from {(DD)} or only nodes from {(MM)}. In this way, only 4 edges of G
have to be calculated instead of analyzing all 9 possible edges in P × P.

4.2 Certifying Dependency Graph Estimations

What is currently missing to certify an application of the dependency graph
processor, is to check, whether a singleton edge is in the dependency graph or
not. Hence, we have to estimate whether the sequence s → t, u → v is a chain,
i.e., whether there are substitutions σ and µ such that tσ →∗R uµ. An obvious
solution is to just look at the root symbols of t and u—if they are different there
is no way that the above condition is met (since all the steps in tσ →∗R uµ
take place below the root, by construction of the dependency pairs). Although
efficient and often good enough, there are more advanced estimations around.

The estimation EDG [1] first replaces via an operation cap all variables and
all subterms of t which have a defined root-symbol by distinct fresh variables.
Then if cap(t) and u do not unify, it is guaranteed that there is no edge.
5 Note that Tarjan’s SCC decomposition algorithm produces exactly this list.



The estimation EDG∗[12] does the same check and additionally uses the
reversed TRS R−1 = {r → ` | ` → r ∈ R}, i.e., it uses the fact that tσ →∗R uµ
implies uµ→∗R−1 tσ and checks whether cap(u) does not unify with t. Of course
in the application of cap(u) we have to take the reversed rules into account
(possibly changing the set of defined symbols) and it is not applicable if R
contains a collapsing rule `→ x where x ∈ V.

The last estimation we consider is based on a better version of cap, called
tcap [9]. It only replaces subterms with defined symbols by a fresh variable, if
there is a rule that unifies with the corresponding subterm.

Definition 10. Let R be a TRS.

• tcap(f(tn)) = f(tcap(t1), . . . , tcap(tn)) iff f(tcap(t1), . . . , tcap(tn)) does not
unify with any variable renamed left-hand side of a rule from R
• tcap(t) is a fresh variable, otherwise

To illustrate the difference between cap and tcap consider the TRS of Ex. 1
and t = div(0, 0). Then cap(t) = xfresh since div is a defined symbol. However,
tcap(t) = t since there is no division rule where the second argument is 0.

Apart from tree automata techniques, currently the most powerful estimation
is the one based on tcap looking both forward as in EDG and backward as in
EDG∗. Hence, we aimed to implement and certify this estimation in IsaFoR.

Unfortunately, when doing so, we had a problem with the domain of variables.
The problem was that although we first implemented and certified the standard
unification algorithm of [15], we could not directly apply it to compute tcap. The
reason is that to generate fresh variables as well as to rename variables in rules
apart, we need a type of variables with an infinite domain. One solution would
have been to constrain the type of variables where there is a function which
delivers a fresh variable w.r.t. any given finite set of variables.

However, there is another and more efficient approach to deal with this prob-
lem than the standard approach to rename and then do unification. Our solution
is to switch to another kind of terms where instead of variables there is just one
special constructor “�” representing an arbitrary fresh variable. In essence, this
data structure represents contexts which do not contain variables, but where mul-
tiple holes are allowed. Therefore in the following we speak of ground-contexts
and use C,D, . . . to denote them.

Definition 11. Let JCK be the equivalence class of a ground-context C where the
holes are filled with arbitrary terms: JCK = {C[t1, . . . , tn] | t1, . . . , tn ∈ T (F ,V)}.

Obviously, every ground-context C can be turned into a term t which only
contains distinct fresh variables and vice-versa. Moreover, every unification prob-
lem between t and ` can be formulated as a ground-context matching problem
between C and `, which is satisfiable iff there is some µ such that `µ ∈ JCK.

Since the result of tcap is always a term which only contains distinct fresh
variables, we can do the computation of tcap using the data structure of ground-
contexts; it only requires an algorithm for ground-context matching. To this end
we first generalize ground-context matching problems to multiple pairs (Ci, `i).



Definition 12. A ground-context matching problem is a set of pairs M =
{(C1, `1), . . . , (Cn, `n)}. It is solvable iff there is some µ such that `iµ ∈ JCiK
for all 1 ≤ i ≤ n. We sometimes abbreviate {(C, `)} by (C, `).

To decide ground-context matching we devised a specialized algorithm which
is similar to standard unification algorithms, but which has some advantages: it
does neither require occur-checks as the unification algorithm, nor is it necessary
to preprocess the left-hand sides of rules by renaming (as would be necessary for
standard tcap). And instead of applying substitutions on variables, we just need
a basic operation on ground-contexts called merge such that merge(C,D) = ⊥
implies JCK ∩ JDK = ∅, and merge(C,D) = E implies JCK ∩ JDK = JEK.

Definition 13. The following rules simplify a ground-context matching problem
into solved form (where all terms are distinct variables) or into ⊥.

(a) M∪ {(�, `)} ⇒match M
(b) M∪ {(f(Dn), f(un))} ⇒match M∪ {(D1, u1), . . . , (Dn, un)}
(c) M∪ {(f(Dn), g(uk))} ⇒match ⊥ if f 6= g or n 6= k
(d) M∪ {(C, x), (D,x)} ⇒match M∪ {(E, x)} if merge(C,D) = E
(e) M∪ {(C, x), (D,x)} ⇒match ⊥ if merge(C,D) = ⊥

Rules (a–c) obviously preserve solvability of M (where ⊥ represents an un-
solvable matching problem). For Rules (d,e) we argue as follows:

{(C, x), (D,x)} ∪ . . . is solvable iff
• there is some µ such that xµ ∈ JCK and xµ ∈ JDK and . . . iff
• there is some µ such that xµ ∈ JCK ∩ JDK and . . . iff
• there is some µ such that xµ ∈ Jmerge(C,D)K and . . . iff
• {(merge(C,D), x)} ∪ . . . is solvable

Since every ground-context matching problem in solved form is solvable, we
have devised a decision procedure. It can be implemented in two stages where
the first stage just normalizes by the Rules (a–c), and the second stage just
applies the Rules (d,e). It remains to implement merge.

merge(�, C)⇒merge C

merge(C,�)⇒merge C

merge(f(Cn), g(Dk))⇒merge ⊥ if f 6= g or n 6= k

merge(f(Cn), f(Dn))⇒merge f(merge(C1, D1), . . . ,merge(Cn, Dn))
f(. . . ,⊥, . . .)⇒merge ⊥

Note that our implementations of the matching algorithm and the merge
function in IsaFoR are slightly different due to different data structures. For
example matching problems are represented as lists of pairs, so it may occur
that we have duplicates inM. The details of our implementation can be seen in
IsaFoR (theory Edg) or in the source of CeTA.



Soundness and completeness of our algorithms are proven in IsaFoR.

Theorem 14. • If merge(C,D)⇒∗merge ⊥ then JCK ∩ JDK = ∅.
• If merge(C,D)⇒∗merge E then JCK ∩ JDK = JEK.
• If (C, `)⇒∗match ⊥ then there is no µ such that `µ ∈ JCK.
• If (C, `)⇒∗match M whereM is in solved form, then there exists some µ such

that `µ ∈ JCK.

Using ⇒match, we can now easily reformulate tcap in terms of ground-context
matching which results in the efficient implementation etcap.

Definition 15. • etcap(f(tn)) = f(etcap(t1), . . . , etcap(tn)) iff
(f(etcap(t1), . . . , etcap(tn)), `)⇒∗match ⊥ for all rules `→ r ∈ R.
• �, otherwise

One can also reformulate the desired check to estimate the dependency graph
whether tcap(t) does not unify with u in terms of etcap. It is the same requirement
as demanding (etcap(t), u) ⇒∗match ⊥. Again, the soundness of this estimation
has been proven in IsaFoR where the second part of the theorem is a direct
consequence of the first part by using the soundness of the matching algorithm.

Theorem 16. (a) Whenever tσ →∗R s then s ∈ Jetcap(t)K.
(b) Whenever tσ →∗R uτ then (etcap(t), u) 6⇒∗match ⊥ and (etcap(u), t) 6⇒∗match ⊥

where etcap(u) is computed w.r.t. the reversed TRS R−1.

4.3 Certifying Dependency Graph Decomposition

Eventually we can connect the results of the previous two subsections to obtain
one function to check a valid application of the dependency graph processor.

checkDepGraphProc(P, L,R) = checkDecomposition(checkEdg(R),P, L)

where checkEdg just applies the criterion of Thm. 16 (b).
In IsaFoR the soundness result of our check is proven.

Theorem 17. If checkDepGraphProc(P, L,R) is accepted and if for all P ′ ∈ L
where P ′ is marked, the DP problem (P ′,R) is finite, then (P,R) is finite.

To summarize, we have implemented and certified the currently best de-
pendency graph estimation which does not use tree automata techniques. Our
check-function accepts any decomposition which is based on a weaker estima-
tion, but requires that the components are given in topological order. Since our
algorithm computes edges only on demand, the number of tests for an edge is
reduced considerably. For example, the five largest graphs in our experiments
contain 73,100 potential edges, but our algorithm only has to consider 31,266.
This reduced the number of matchings from 13 millions down to 4 millions.

Furthermore, our problem of not being able to generate fresh variables or to
rename variables in rules apart led to a more efficient algorithm for tcap based on
matching instead of unification: simply replacing tcap by etcap in TTT2 reduced
the time for estimating the dependency graph by a factor of two.



5 Certifying the Reduction Pair Processor

One important technique to prove finiteness of a DP problem (P,R) is the so-
called reduction pair processor. The general idea is to use a well-founded order
where all rules of P ∪ R are weakly decreasing. Then we can delete all strictly
decreasing rules from P and continue with the remaining dependency pairs.

We first state a simplified version of the reduction pair processor as it is
introduced in [8], where we ignore the usable rules refinement.

Theorem 18. If all the following properties are satisfied, then finiteness of (P \
�,R) implies finiteness of (P,R).

(a) � is a well-founded and stable order
(b) % is a stable and monotone quasi-order
(c) % ◦ � ⊆ � and � ◦% ⊆ �
(d) P ⊆ � ∪% and R ⊆ %

Of course, to instantiate the reduction pair processor with a new kind of
reduction pair, e.g., LPO, polynomial orders,. . . , we first have to prove the first
three properties for that kind of reduction pairs. Since we plan to integrate many
reduction pairs, but only want to write the reduction pair processor once, we
tried to minimize these basic requirements such that the reduction pair processor
still remains sound in total. In the end, we replaced the first three properties by:

(a) � is a well-founded and stable relation
(b) % is a stable and monotone relation
(c) % ◦ � ⊆ �

In this way, for every new class of reduction pairs, we do not have to prove
transitivity of� or% anymore, as it would be required for Thm. 18. Currently, we
just support reduction pairs based on polynomial interpretations with negative
constants [13], but we plan to integrate other reduction pairs in the future.

For checking an application of a reduction pair processor we implemented
a generic function checkRedPairProc in Isabelle, which works as follows. It
takes as input two functions checkS and checkNS which have to approximate a
reduction pair, i.e., whenever checkS(s, t) is accepted, then s � t must hold in
the corresponding reduction pair and similarly, checkNS has to guarantee s % t.

Then checkRedPairProc(checkS, checkNS,P,P ′,R) works as follows:

• iterate once over P to divide P into P� and P6� where the former set contains
all pairs of P where checkS is accepted
• ensure for all s→ t ∈ R∪P6� that checkNS(s, t) is accepted, otherwise reject
• accept if P6� ⊆ P ′, otherwise reject

The corresponding theorem in IsaFoR states that a successful application of
checkRedPairProc(. . . ,P,P ′,R) proves that (P,R) is finite whenever (P ′,R) is
finite. Obviously, the first two conditions of checkRedPairProc ensure condition
(d) of Thm. 18. Note, that it is not required that all strictly decreasing pairs are
removed, i.e., our checks may be stronger than the ones that have been used in
the termination provers.



6 Certifying the Whole Proof Tree

From Sect. 3–5 we have basic checks for the three techniques of applying depen-
dency pairs (checkDPs), the dependency graph processor (checkDepGraphProc),
and the reduction pair processor (checkRedPairProc). For representing proof
trees within the DP framework we used the following data structures in IsaFoR.

datatype ’f RedPair = NegPolo "(’f × (cint × nat list))list"

datatype (’f,’v)DPProof = . . . 6

| PisEmpty
| RedPairProc "’f RedPair" "(’f,’v)trsL" "(’f,’v)DPProof"
| DepGraphProc "((’f,’v)DPProof option × (’f,’v)trsL)list"

datatype (’f,’v)TRSProof = . . . 6

| DPTrans "(’f shp,’v)trsL" "(’f shp,’v)DPProof"

The first line fixes the format for reduction pairs, i.e., currently of (linear)
polynomial interpretations where for every symbol there is one corresponding en-
try. E.g., the list [(f, (−2, [0, 3]))] represents the interpretation where Pol(f)(x, y)
= max(−2 + 3y, 0) and Pol(g)(x1, . . . , xn) = 1 +Σ1≤i≤nxi for all f 6= g.

The datatype DPProof represents proof trees for DP problems. Then the
check for valid DPProofs gets as input a DP problem (P,R) and a proof tree
and tries to certify that (P,R) is finite. The most basic technique is the one called
PisEmpty, which demands that the set P is empty. Then (P,R) is trivially finite.

For an application of the reduction pair processor, three inputs are required.
First, the reduction pair redp, i.e., some polynomial interpretation. Second, the
dependency pairs P ′ that remain after the application of the reduction pair
processor. Here, the datatype trsL is an abbreviation for lists of rules. And
third, a proof that the remaining DP problem (P ′,R) is finite. Then the checker
just has to call createRedPairProc(redp,P,P ′,R) and additionally calls itself
recursively on (P ′,R). Here, createRedPairProc invokes checkRedPairProc
where checkS and checkNS are generated from redp.

The most complex structure is the one for decomposition of the (estimated)
dependency graph. Here, the topological list for the decomposition has to be
provided. Moreover, for each subproblem P ′, there is an optional proof tree.
Subproblems where a proof is given are interpreted as “real SCCs” whereas the
ones without proof remain unmarked for the function checkDepGraphProc.

The overall function for checking proof trees for DP problems looks as follows.

checkDPProof(P,R,PisEmpty) = (P = [])
checkDPProof(P,R,(RedPairProc redp P ′ prf)) =
createRedPairProc(redp,P,P ′,R) ∧ checkDP(P ′,R,prf)

checkDPProof(P,R,DepGraphProc P ′s) =
checkDepGraphProc(P,map (λ(prfO,P ′).(isSome prfO,P ′)) P ′s, R)
∧

∧
(Some prf,P′)∈P′s checkDPProof(P ′,R,prf)

6 CeTA supports even more techniques, cf. CeTA’s website for a complete list.

http://cl-informatik.uibk.ac.at/software/ceta


Theorem 19. If checkDPProof(P,R,prf) is accepted then (P,R) is finite.

Using checkDPProof it is now easy to write the final method checkTRSProof
for proving termination of a TRS, where computeID is an implementation of ID.

checkTRSProof(R,DPTrans P prf) =
checkDPs(R,P) ∧ checkDPProof(P,computeID(R),prf)
For the external usage of CeTA we developed a well documented XML-format,

cf. CeTA’s website. Moreover, we implemented two XML parsers in Isabelle, one
that transforms a given TRS into the internal format, and another that does
the same for a given proof. The function certifyProof, finally, puts everything
together. As input it takes two strings (a TRS and its proof). Then it applies
the mentioned parsers and afterwards calls checkTRSProof on the result.

Theorem 20. If certifyProof(R,prf) is accepted then SN(→R).

To ensure that the parser produces the right TRS, after the parsing process
it is checked that when converting the internal data-structures of the TRS back
to XML, we get the same string as the input string for the TRS (modulo white-
space). This is a major benefit in comparison to the two other approaches where
it can and already has happened that the uncertified components Rainbow/CiME
produced a wrong proof goal from the input TRS, i.e., they created a termination
proof within Coq for a different TRS than the input TRS.

7 Error Messages

To generate readable error messages, our checks do not have a Boolean return
type, but a monadic one (isomorphic to ’e option). Here, None represents an
accepted check whereas Some e represents a rejected check with error message e.
The theory ErrorMonad contains several basic operations like >> for conjunction
of checks, <- for changing the error message, and isOK for testing acceptance.

Using the error monad enables an easy integration of readable error messages.
For example, the real implementation of checkTRSProof looks as follows:

fun checkTRSProof where "checkTRSProof R (DPTrans P prf) = (
checkDPs R P
<- (λs. ’’error . . .’’ @ showTRS R @ ’’. . .’’ @ showTRS P @ s)

>> checkDPProof P (computeID R) prf
<- (λs. ’’error below switch to dependency pairs’’ @ s))"

However, since we do not want to adapt the proofs every time the error
messages are changed, we setup the Isabelle simplifier such that it hides the
details of the error monad, but directly removes all the error handling and turns
monadic checks via isOK(...) into Boolean ones using the following lemmas.

lemma "isOK(m >> n) = isOK(m) ∧ isOK(n)"
lemma "isOK(m <- s) = isOK(m)"

Then for example isOK(checkTRSProof R (DPTrans P prf)) directly simpli-
fies to isOK(checkDPs R P) ∧ isOK(checkDPProof P (computeID R) prf).

http://cl-informatik.uibk.ac.at/software/ceta/input.php


8 Experiments and Conclusion

Isabelle’s code-generator is invoked to create CeTA from IsaFoR. To compile CeTA
one auxiliary hand-written Haskell file CeTA.hs is needed, which just reads two
files (one for the TRS, one for the proof) and then invokes certifyProof.

We tested CeTA (version 1.03) using TTT2 as termination prover (TC and TC+).
Here, TTT2 uses only the techniques of this paper in the combination TC, whereas
in TC+ all supported techniques are tried, including usable rules and nontermi-
nation. We compare to CiME/Coccinelle using AProVE [10] or CiME [5] as provers
(ACC,CCC), and to Rainbow/CoLoR using AProVE or Matchbox [18] (ARC,MRC)
where we take the results of the latest certified termination competition in Nov
20087 involving 1391 TRSs from the termination problem database.

We performed our experiments using a PC with a 2.0 GHz processor running
Linux where both TTT2 and CeTA where aborted after 60 seconds. The following
table summarizes our experiments and the termination competition results.

TC TC+ ACC CCC ARC MRC
proved / disproved 401 / 0 572 / 214 532 / 0 531 / 0 580 / 0 458 / 0

certified 391 / 0 572 / 214 437 / 0 485 / 0 558 / 0 456 / 0
rejected 10 0 3 0 0 2

cert. timeouts 0 0 92 46 22 0
total cert. time 33s 113s 6212s 6139s 7004s 3602s

The 10 proofs that CeTA rejected are all for nonterminating TRSs which do
not satisfy the variable condition. Since TC supports only polynomial orders as
reduction pairs, it can handle less TRSs than the other combinations. But, there
are 44 TRSs which are only solved by TC (and TC+), the reason being the time-
limit of 60 seconds (19 TRSs), the dependency graph estimation (8 TRSs), and
the polynomial order allowing negative constants (17 TRSs).

The second line clearly shows that TC+ (with nontermination and usable
rules support) currently is the most powerful combination with 786 certified
proofs. Moreover, TC+ can handle 214 nonterminating and 102 terminating
TRSs where none of ACC, CCC, ARC, and MRC were successful. The efficiency
of CeTA is also clearly visible: the average certification time in TC and TC+ for
a single proof is by a factor of 50 faster than in the other combinations.8

For more details on the experiments we refer to CeTA’s website.
To conclude, we presented a modular and competitive termination certifier,

CeTA, which is directly created from our Isabelle library on term rewriting, IsaFoR.

7 http://termcomp.uibk.ac.at/
8 Note that in the experiments above, for each TRS, each combination might have

certified a different proof. In an experiment where the certifiers where run on the
same proofs for each TRS (using only techniques that are supported by all certifiers,
i.e., EDG and linear polynomials without negative constants), CeTA was even 190
times faster than the other approaches and could certify all 358 proofs, whereas
each of the other two approaches failed on more than 30 proofs due to timeouts.

http://cl-informatik.uibk.ac.at/software/ceta/results.php
http://termcomp.uibk.ac.at/termcomp/competition/competitionResults.seam?category=10235&competitionId=15991&cid=1959


Its main features are that CeTA is available as a stand-alone binary, the efficiency,
the dependency graph estimation, nontermination and usable rules support, the
error handling, and the robustness.

As each sub-check for a termination technique can be called separately, and
as our check to certify a whole termination proof just invokes these sub-checks, it
seems possible to integrate other techniques (even if they are proved in a different
theorem prover) as long as they are available as executable code. However, we
will need a common proof format and a compatible definition.

As future work we plan to certify several other termination techniques where
we already made progress in the formalization of semantic labeling and the
subterm-criterion. We would further like to contribute to a common proof format.

References

1. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-
oretical Computer Science, 236:133–178, 2000.

2. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

3. F. Blanqui, W. Delobel, S. Coupet-Grimal, S. Hinderer, and A. Koprowski. CoLoR,
a Coq library on rewriting and termination. In Proc. WST ’06, 69–73, 2006.

4. E. Contejean, P. Courtieu, J. Forest, O. Pons, and X. Urbain. Certification of
automated termination proofs. In Proc. FroCoS ’07, LNAI 4720, 148–162, 2007.

5. E. Contejean, C. Marché, B. Monate, and X. Urbain. CiME. http://cime.lri.fr.
6. P. Courtieu, J. Forest, and X. Urbain. Certifying a termination criterion based on

graphs, without graphs. In Proc. TPHOLs ’08, LNCS 5170, 183–198, 2008.
7. N. Dershowitz. Termination dependencies. In Proc. WST ’03, 27–30, 2003.
8. J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair framework:

Combining techniques for automated termination proofs. In Proc. LPAR ’04, LNAI
3452, 301–331, 2005.

9. J. Giesl, R. Thiemann, and P. Schneider-Kamp. Proving and disproving termina-
tion of higher-order functions. In Proc. FroCoS ’05, LNAI 3717, 216–231, 2005.

10. J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termina-
tion proofs in the DP framework. In Proc. IJCAR ’06, LNAI 4130, 281–286, 2006.

11. Florian Haftmann. Code generation from Isabelle/HOL theories, April 2009. http:
//isabelle.in.tum.de/doc/codegen.pdf.

12. N. Hirokawa and A. Middeldorp. Automating the dependency pair method. In-
formation and Computation, 199(1-2):172–199, 2005.

13. N. Hirokawa and A. Middeldorp. Tyrolean Termination Tool: Techniques and fea-
tures. Information and Computation, 205(4):474–511, 2007.

14. M. Korp, C. Sternagel, H. Zankl, and A. Middeldorp. Tyrolean Termination Tool
2. In Proc. RTA’09, volume 5595 of LNCS, 295–304, 2009.

15. A. Martelli and U. Montanari. An efficient unification algorithm. ACM Transac-
tions on Programming Languages and Systems, 4(2):258–282, 1982.

16. T. Nipkow, L.C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. LNCS 2283. Springer, 2002.

17. S. Peyton Jones et al. The Haskell 98 language and libraries: The revised report.
Journal of Functional Programming, 13(1):0–255, Jan 2003.

18. J. Waldmann. Matchbox: A tool for match-bounded string rewriting. In Proc.
RTA ’04, LNCS 3091, 85–94, 2004.

http://cime.lri.fr
http://isabelle.in.tum.de/doc/codegen.pdf
http://isabelle.in.tum.de/doc/codegen.pdf

	Certification of Termination Proofs using CeTA
	René Thiemann and Christian Sternagel

