
Certification of Nontermination Proofs using
Strategies and Nonlooping Derivations‹

Julian Nagele, René Thiemann, and Sarah Winkler

Institute of Computer Science, University of Innsbruck, Austria
{julian.nagele,rene.thiemann,sarah.winkler}@uibk.ac.at

Abstract. The development of sophisticated termination criteria for
term rewrite systems has led to powerful and complex tools that pro-
duce (non)termination proofs automatically. While many techniques to
establish termination have already been formalized—thereby allowing
to certify such proofs—this is not the case for nontermination. In par-
ticular, the proof checker CeTA was so far limited to (innermost) loops.
In this paper we present an Isabelle/HOL formalization of an extended
repertoire of nontermination techniques. First, we formalized techniques
for nonlooping nontermination. Second, the available strategies include
(an extended version of) forbidden patterns, which cover in particular
outermost and context-sensitive rewriting. Finally, a mechanism to sup-
port partial nontermination proofs further extends the applicability of
our proof checker.

1 Introduction

Program verification aims to establish certain properties of pieces of software,
such as termination. But in presence of bugs it is often at least as important to
show the negative property by means of a counter-example or, more generally,
a disproof, such as a nontermination argument.

In this paper we consider term rewrite systems (TRSs) which constitute
a powerful means to express functional programs in a compact way, and are
thus a natural input format for program analysis. However, many programming
languages employ particular evaluation strategies that are to be considered in
program analysis. Thus also TRSs have to be analyzed with respect to spe-
cific strategies. In particular, a TRS which is nonterminating when ignoring the
strategy may still be terminating when the evaluation respects the strategy.

Sophisticated techniques to analyze termination of TRSs (under strategies)
have been developed and implemented in tools for automated termination anal-
ysis like AProVE [6] and TTT2 [12]. However, these tools are complex and thus
one should not blindly trust them: ever so often some tool delivers an incorrect
proof, which remains undetected unless another prover gives the opposite answer
on the same TRS. Therefore, it is of major importance to independently certify
the generated proofs, which can be done using various certifiers [3,4,21] that rely
on formalizations within some trusted proof assistant. Due to certification, bugs

‹ This research was supported by the Austrian Science Fund (FWF): P22767 and I963.

have been revealed in termination tools that have gone unnoticed for years and
were easily fixed after they have been detected.

Our certifier for nontermination techniques is developed in the proof assistant
Isabelle/HOL [16], and a preliminary version was already described in [23], which
however was quite limited: only looping TRSs R could be treated, i.e., TRSs
which admit derivations of the form t Ñ`

R Crtµs for some term t, context C,
and substitution µ; and the only supported strategy was innermost. There are
even more severe restrictions for the other certifiers: [3] only supports loops
without strategy, and [4] does not support nontermination proofs at all.

In the meanwhile, we extended our repertoire of formalized nontermina-
tion techniques. It now covers techniques for nonlooping nonterminating TRSs.
Moreover, as strategy specification we now support an extended version of for-
bidden patterns [9], which generalizes many common strategies like (leftmost)-
innermost, (leftmost)-outermost, and context-sensitive rewriting [15]. Finally,
we also integrated a mechanism to support partial nontermination proofs, which
further increases the applicability of our certifier and led to the detection of a
severe soundness bug of AProVE, which has now been fixed.

We consider our contributions threefold. First and foremost, our extensions
significantly increased the number of certifiable nontermination proofs. Second,
on the theory level we could drastically simplify one of the algorithms for check-
ing nontermination using forbidden patterns, and relax the preconditions for
applying the technique of rewriting dependency pairs (cf. Theorem 14). Finally,
we illustrate how termination checkers can benefit from certification: we used
Isabelle’s code generator [10] to integrate the executable functions from our
certifier in TTT2, such that this tool is now able to automatically generate non-
termination proofs involving general forbidden pattern strategies. This nearly
doubled the number of generated nontermination proofs of TTT2.

The remainder is structured as follows. In § 2 we give preliminaries. In § 3 we
explain our formalization of loop detection involving forbidden patterns. After-
wards, § 4 deals with techniques that allow to disprove termination of nonlooping
TRSs, namely the techniques of rewriting and narrowing dependency pairs [7],
the switch between innermost termination and termination [8], and a direct tech-
nique to disprove termination [5]. Experimental data is provided in § 5 where we
also explain how we integrated forbidden patterns in TTT2, and why and how we
added support for partial nontermination proofs to CeTA. We conclude in § 6.

Our formalization is part of the Isabelle Formalization of Rewriting (IsaFoR)
which also includes our certifier CeTA [21]. Since IsaFoR contains every tiny de-
tail of each proof, in the paper we just highlight some differences between the
formalization and the paper proofs. Both IsaFoR and all details on our exper-
iments are available at http://cl-informatik.uibk.ac.at/software/ceta/

experiments/ntcert/.

2 Preliminaries

We refer to [2] for the basics of rewriting. We use `, r, s, t, u, w for terms, f , g

2

http://cl-informatik.uibk.ac.at/software/ceta/experiments/ntcert/
http://cl-informatik.uibk.ac.at/software/ceta/experiments/ntcert/

for function symbols, x, y for variables, σ, µ, τ , δ for substitutions, i, j, k, n, m
for natural numbers, o, p, q for positions, C, D for contexts, and P, R for TRSs.
Here, substitutions are mappings from variables to terms, and tµ is the term t
where each variable x in t has been replaced by µpxq; contexts are terms which
contain exactly one hole l , tr¨sp is the context that is obtained by replacing the
subterm t|p of t at position p by the hole l. The term Crts is the term where
the hole in C is replaced by t. We write sD t if s “ Crts for some context C and
sB t if sD t and s ‰ t. A position p is left of q iff p “ o i p1, q “ o j q1, and i ă j.
The set of positions in a term t is written as Posptq and ε denotes the empty
position. The set of variables is V, and Vptq are the variables within a term t.

A TRS R is a set of rewrite rules `Ñ r. The rewrite relation of R at position
p is defined by t ÑR,p s iff t “ Cr`σs and s “ Crrσs for some rule ` Ñ r P R,
substitution σ, and context C with C|p “ l . In this case, the term `σ is called
a redex at position p. The reduction is outermost iff there is no redex above p,
and it is innermost (denoted iÑR,p) iff there are no redexes below p. We often
omit p and R in a reduction ÑR,p, if R is obvious from the context, and if p can
be chosen freely. A TRS is overlay iff all critical pairs of the TRS are due to root
overlaps, i.e., there are no rules `1 Ñ r1 and `2 Ñ r2 such that a non-variable
proper subterm of `1 unifies with `2. A TRS is locally confluent if every critical
pair ps, tq is joinable, i.e., there is some u such that sÑ˚

R u and tÑ˚
R u.

We write t Ñ! s if both t Ñ˚ s and s is in normal form w.r.t. Ñ, i.e., there
is no u such that sÑ u. Strong normalization of Ñ is denoted by SN pÑq, and
SNÑptq denotes that t admits no infinite derivation w.r.t. Ñ. We sometimes
write SN Rptq instead of SNÑRptq. A DP problem is a pair of two TRSs pP,Rq
where P is a set of dependency pairs encoding recursive calls, and R is used to
evaluate the arguments between two recursive calls. A pP,Rq chain is an infinite
derivation of the form s1σ1 ÑP,ε t1σ1 Ñ

˚
R s2σ2 ÑP,ε t2σ2 Ñ

˚
R . . . where

each si Ñ ti P P. The chain is an innermost chain, iff additionally tiσi
iÑ!
R

si`1σi`1 is satisfied for all i. A TRS R is (innermost) nonterminating iff SN pÑRq

(SN p iÑRq) does not hold. A DP problem pP,Rq is (innermost) nonterminating
iff it admits an (innermost) pP,Rq chain or if R is (innermost) nonterminating.1

Since the paper describes the formalization on an informal level which does
not require deep knowledge of Isabelle, we omit an introduction to this proof
assistant here. The logic we are using is classical HOL, which is based on simply-
typed lambda-calculus, enriched with a simple form of ML-like polymorphism.

3 Forbidden Patterns

This section deals with checking whether a loop is indeed a loop with respect to
a particular evaluation strategy: Given a certificate containing a TRS R, a loop
and some strategy, our proof checker CeTA can check whether there does indeed
exist an infinite R-rewrite sequence which adheres to this strategy.

1 In the literature (e.g., in [7]) a nonterminating DP problem is also called infinite.
This is the reason why in IsaFoR this property is defined as infinite-dpp.

3

To support a broad variety of strategies we consider forbidden pattern rewrit-
ing, which covers for instance innermost, outermost, and context-sensitive rewrit-
ing [9,15]. Hence the formalization of techniques for forbidden pattern strategies
has the significant advantage that a wide range of strategies can be treated by the
same formalism, so CeTA internally converts all outermost and context-sensitive
strategies into forbidden patterns before the certifier for nontermination proofs
is invoked, cf. certify-cert-problem in Proof Checker.thy. We give a motivating
example before recalling some preliminaries on forbidden pattern rewriting.

Example 1. Consider the following applicative TRS which models a buggy im-
plementation of the map function, where ‘ denotes a binary infix application
symbol, and : the cons operator. In the recursive call one forgot to invoke tl on
xs and hence the TRS does not terminate.

map ‘ f ‘ xsÑ if ‘ pempty ‘ xsq ‘ nil ‘ p: ‘ pf ‘ phd ‘ xsqq ‘ pmap ‘ f ‘ xsqq

hd ‘ p: ‘ x ‘ xsq Ñ x if ‘ true ‘ t ‘ eÑ t empty ‘ p: ‘ x ‘ xsq Ñ false

tl ‘ p: ‘ x ‘ xsq Ñ xs if ‘ false ‘ t ‘ eÑ e empty ‘ nilÑ true

Without strategy there is a loop map ‘ f ‘ nil Ñ Crmap ‘ f ‘ nilqs for C “ if ‘
pempty ‘ nilq ‘ nil ‘ p: ‘ pf ‘ phd ‘ nilqq ‘ lq which definitely does not show the real
problem of map to the user: the loop ignores the common evaluation strategy for
if which disallows reductions in the then and else branches. Note that due to the
applicative setting this desired behavior is not expressible by a context-sensitive
strategy, but it can be modeled by a forbidden strategy, as shown in Example 3.

3.1 Background

Using forbidden pattern strategies one can specify that the position of any redex
may not be below (or above) certain patterns. In this way one can express out-
ermost (or innermost) strategies. We consider the following extended definition
of a forbidden pattern which allows for patterns with location R. This admits to
also express strategies like leftmost-outermost with special treatment for if.

Definition 2. A forbidden pattern is a triple p`, o, λq for a term `, position
o P Posp`q, and λ P {H,A,B,R}. For a set Π of forbidden patterns the relation
ΠÑ is defined by t ΠÑp s iff tÑp s and there is no pattern p`, o, λq P Π such that
there exist a position o1 P Posptq, a substitution σ with t|o1 “ `σ, and

‚ p “ o1o if λ “ H (here),
‚ p ą o1o if λ “ B (below), and

‚ p ă o1o if λ “ A (above),
‚ p is right of o1 if λ “ R (right of).

Example 3. For the TRS in Example 1, the forbidden pattern strategy where Π
consists of pif ‘ b ‘ t ‘ e, p, λq for all p P {12, 2} and λ P {H,B} has the intended
effect that reductions in the then and else branches are not allowed.

A TRS R is forbidden-pattern nonterminating w.r.t. Π iff SN pΠÑq, which
can be proven via forbidden pattern loops (Π-loops). To succinctly describe in-
finite derivations that are induced by loops we use context-substitutions.

4

Definition 4 ([22]). A context-substitution is a pair pC, µq consisting of a con-
text C and a substitution µ. The n-fold application of pC, µq to a term t, denoted
tpC, µqn, is inductively defined as tpC, µq0 “ t and tpC, µqn`1 “ CrtpC, µqnµs.

Cp(3)

Cp(3)

Cp(3)

t
q
(1)

µ(4)

µ

µ

µ(2)

µ(2)

µ(2)

µ(4)

µ

µ(4)

Fig. 1. Redexes left of pnq.

As an example for context-substi-
tutions, we refer to Figure 1 which il-
lustrates the term tpC, µq3.

Context-substitutions allow to con-
cisely write the infinite derivation in-
duced by a loop t Ñ` Crtµs as t “
tpC, µq0 Ñ` tpC, µq1 Ñ` . . . Ñ`

tpC, µqn Ñ`
To facilitate the certification of

loops under strategies, one needs to
analyze its constituting steps. In the
remainder of this section we will con-
sider a loop with starting term t, con-
text C and substitution µ with C|p “
l of the form

t “ tpC, µq0 “ t1 Ñq1 t2 Ñq2

¨ ¨ ¨ Ñqm tm`1 “ tpC, µq1
(1)

A loop of the form (1) is a Π-loop iff the step tipC, µq
n Ñpnqi ti`1pC, µq

n

respects the forbidden pattern strategy induced by Π for all i ď m and all
n P N. For instance, assuming that one of the loop’s redexes is t|q as illustrated
in Figure 1, we need to know whether this position remains a redex w.r.t. to the
strategy, no matter how many contexts and substitutions are applied around t.

The problem of whether a loop constitutes a Π-loop is decidable. To this
end, the following notions from innermost and outermost loops are useful.

Definition 5 ([20], [22]). A matching problem is a pair pu Í `, µq. It is solv-
able iff there are n and σ such that uµn “ `σ. An extended matching problem
is a tuple pD Í `, C, t,M, µq where M “ {s1 Í `1, . . . , sn Í `n}. It is solvable
iff there are m, k, σ, such that DrtpC, µqmsµk “ `σ and siµ

k “ `iσ for all i. If
M “ H, we just omit it.

A set of (extended) matching problems is solvable iff some element is solvable.
Given a loop, in order to decide whether it indeed constitutes a Π-loop one
computes a set of (extended) matching problems which has no solution if and
only if the loop is indeed a Π-loop.

3.2 From Forbidden Pattern Loops to Matching Problems

A rewrite step is a Π-step iff it adheres to every single pattern π P Π. In fact a
loop (1) is a Π-loop if and only if the following key property holds for all choices
of π P Π, t “ ti, t

1 “ ti`1 and q “ qi where 1 ď i ă m [24]:

Property 6. For a forbidden pattern π “ p`, o, λq and t Ñq t1 all reductions
tpC, µqn Ñpnq t

1pC, µqn are allowed with respect to π, i.e., there are no n, o1,

5

and σ such that tpC, µqn|o1 “ `σ and pnq “ o1o if λ “ H, pnq ă o1o if λ “ A,
pnq ą o1o if λ “ B, and pnq is right of o1 if λ “ R.

This property can be decided by a case analysis on λ, defining suitable sets of
(extended) matching problems for each case. In the following paragraphs we give
these sets for patterns of type p¨, ¨,Rq and p¨, ¨,Bq. The other cases are similar,
details can be found in the formalization.

Forbidden Patterns of Type p¨, ¨,Rq For patterns π “ p`, o,Rq, it has to be
checked whether pnq occurs to the right of o1. There are four possibilities, as
illustrated in Figure 1: (1) o1 ends in t, (2) o1 ends in a term tµk, (3) o1 ends
in a position of Ck, or otherwise (4) o1 ends in a position of Ckµk´1, for some
k ď n. Let Wptq “

⋃
kPN Vptµkq denote the set of variables introduced by the

substitution µ when applied iteratively. Then each case can be covered by a set
of matching problems as follows:

Definition 7. Let MR,π denote the union of the following four sets:

MR,1 “ {pu Í `, µq | q1 P Posptq, q1 is left of q, and u “ t|q1}
MR,2 “ {pu Í `, µq | q1 P Posptq, q1 is left of q, x PWpt|q1q, and uE xµ}
MR,3 “ {pu Í `, µq | p1 P PospCq, p1 is left of p, and u “ C|p1}
MR,4 “ {pu Í `, µq | p1 P PospCq, p1 is left of p, x PWpC|p1q, and uE xµ}

For the formalization of patterns p¨, ¨,Rq, we first had to incorporate support
for the left-of relation on positions. However, the most effort was spent on the
case analysis, i.e., an induction proof showing that any position in a context-
substitution tpC, µqn fits into one of the four cases.

Forbidden Patterns of Type p¨, ¨,Bq For patterns π “ p`, o,Bq the position
o1o has to be strictly above the redex, i.e., pnq ą o1o. Here two cases can be
distinguished: o1o may end in t, so o1o ě pn, or it may end in some occurrence
of C, so o1o ă pn (similar to cases (1) and (3) in Figure 1).

In case of the former, o1o has finitely many possibilities to hit a position in t
above q. Thus, this case reduces to finitely many p¨, ¨,Hq cases.

In the latter case, o1o is a non-hole position of Cn, i.e., pn ą o1o (and hence
p ą ε). We consider all possibilities for non-empty subcontexts D, and compute
a number n0 such that it suffices to consider the term tpC, µqn0 in order to
account for all loop iterations.2 A detailed analysis of these two cases leads to
the following sets of matching problems MB and EB:

Definition 8. The (extended) matching problems MB,π “MB,1 Y EB,2 are

MB,1 “
⋃
q̄ăq

MH,p`,q̄,Hq

EB,2 “ {pD Í `, Cµ, tpC, µqn0µ, µq | l CD E C, D|p2 “ l , p2pn0 ą o}
2 More precisely, n0 can be set to 0 if p “ ε and to d |o|´|q|

|p|
e otherwise.

6

where MH,p`,q̄,Hq refers to the H matching problem for t, q, and pC, µq, and n0

is, dependent on p2, the minimal number satisfying |p2| ` n0|p| ą |o|.

Unsolvability of the respective sets of (extended) matching problems is a
sufficient and necessary condition for Property 6:

Theorem 9 ([24]). Let t Ñq t
1 and let pC, µq be a context-substitution such

that C|p “ l . All reductions tpC, µqn Ñpnq t
1pC, µqn are allowed with respect to

the pattern π “ p`, o, λq if and only if Mλ,π is not solvable.

As to be expected from the technical definitions, the soundness and complete-
ness results for the respective cases required a considerable amount of reasoning
about contexts and positions. We preferred contexts over positions whenever
possible: position reasoning tends to be tedious because one always needs to
ensure that they are valid in the term where they are to be used. For instance,
IsaFoR internally represents forbidden patterns as triples p`r¨so, `|o, λq rather than
p`, o, λq to avoid the obvious side condition o P Posp`q. The amount of bureau-
cracy on valid positions required throughout the formalization was nevertheless
substantial. Apart from this, the proofs for all cases could be formalized along
the lines of the paper proof. For the case of B patterns the results crucially rely
on the new solving procedure for extended matching problems.

3.3 Deciding Solvability of Extended Matching Problems

Solvability of (extended) matching problems is known to be decidable [20,22],
and in [23] we already formalized and simplified the decision procedure for non-
extended matching problems. In the remainder of this section we present our
algorithm to decide solvability of extended matching problems—these problems
originate from the outermost loop checking procedure and are also required in
the case of forbidden patterns, cf. Definition 8.

As in [23], our proofs deviate from the paper proofs considerably and result
in a simplified decision procedure which we also integrated in termination tools.
For example, in AProVE we have been able to delete some sub-algorithms (180
lines) and replace them by a single line of code.

The decision procedure in [22] works in three phases: first, any extended
matching problem is simplified to solved form; second, from the simplified match-
ing problem a set of (extended) identity problems is generated, and finally, solv-
ability of the identity problems is decided. We followed this general structure
in the formalization, and only report on the first and the third phase, since the
second phase was straightforward.

The algorithm for the first phase consists of a set of strongly normalizing
inference rules. It contains rules for decomposition and symbol clash as in a stan-
dard matching algorithm3, but also incorporates rules to apply a (context-)sub-
stitution in cases where a standard matching algorithm would fail.

3 Rules (i)-(iv) in [22, Def. 5], which are omitted here for brevity.

7

Definition 10 ([22, Def. 5]). Let MP “ pD Í `0, C, t,M, µq be an extended
matching problem where M “ {s1 Í `1, . . . , sm Í `m} and C ‰ l. Then MP is
in solved form iff each `i is a variable. Let Vincr,µ “ {x P V | Dn : xµn R V} be
the set of increasing variables.

We define a relation ñ which simplifies extended matching problems that are
not in solved form, so suppose `j “ fp`11, . . . , `

1
m1q.

(v) MP ñ K if sj P VzVincr,µ

(vi) MP ñ pDµ Í `0, Cµ, tµ, {siµ Í `i | 1 ď i ď m}, µq if sj P Vincr,µ

(vii) MP ñ J if j “ 0, D “ l, and pMY {t Í `0}, µq is solvable

(viii) MP ñ pC Í `0, Cµ, tµ,M, µq if j “ 0, D “ l, and pMY {t Í `0}, µq
is not solvable

As in [23], where we formalized the inference rules for simplifying non-
extended matching problems, we implemented these rules directly as a function
simplify-emp-main using Isabelle’s function package [13]. In this way, we did not
have to formalize confluence of ñ.

Note that for this function one faces the problem of getting it terminating
and efficient at the same time: if one has to recompute Vincr,µ in every iteration,
the function becomes inefficient; on the other hand, if one passes Vincr,µ using an
additional parameter (e.g., Vi) then the function is not necessarily terminating as
it is not guaranteed that Vi is indeed instantiated by Vincr,µ. To see this, suppose
the simplification algorithm is invoked on the problem pD Í `, C, t, {x Í c}, µq
where µ is the empty substitution but Vi a set containing x. Then an application
of Rule (vi) immediately leads to a recursive call with the same arguments.

To solve this problem, in [23] it was proposed to write two functions: The main
soundness result is proven for a terminating but inefficient one where Vincr,µ gets
recomputed in every recursive call. A second, possibly nonterminating function
has Vi as additional argument and is proven to be equivalent to the first function
if invoked with the right arguments, i.e., in this case with Vi “ Vincr,µ.

Although this solution leads to an efficient and sound implementation, it
imposes quite some overhead. First, one has to write the simplification algorithm
twice, and second one has to perform an equivalence proof of the two functions.

Therefore we propose a different solution for simplify-emp-main. The simple
idea is to pass the pair pµ, Viq as an argument to simplify-emp-main, where this
pair is encapsulated in a new type with the invariant that Vi “ Vincr,µ. Thus, in
the implementation one just has to provide selectors from the new type to both
µ and Vi, where it now suffices to write only one implementation of simplify-
emp-main. Moreover, the whole quotient construction—creation of the new type,
writing the selectors, reasoning about this new type—can conveniently be done
via the lifting and transfer-package of Isabelle [11]. Note that in the meantime
we also rewrote the simplification algorithm for matching problems in [23] using
the same idea, again by using lifting and transfer.

For the third phase where (extended) identity problems are to be solved,
we could of course reuse the algorithm for non-extended identity problems that

8

has been developed in [23]. However, we did not stick to the complicated algo-
rithm of [22] for extended identity problems, since it requires several auxiliary
algorithms and the soundness proofs are difficult or tedious to formalize. (The
whole description takes 3.5 pages in [22] where these pages do not even cover
all proofs.) Instead, we developed a new, partial algorithm which is easy to im-
plement and easy to formalize. In detail, we show that all extended identity
problems that are constructed for forbidden patterns via simplify-emp-main be-
long to a special class of extended identity problems where the context within
such a problem is large in comparison to the other terms. This class of problems
can easily be translated into non-extended identity problems via the following
mini-algorithm: an extended identity problem pD « s, µ, C, tq is solvable iff the
identity problem pDrts « s, µq is solvable, provided there is some i such that
C B sµi. For more details on (extended) identity problems and our new proofs
we refer to [22] and lemmas eident-prob-to-ident-prob and simplify-emp-main-
large-C within the theory Outermost Loops.thy.

4 Nonlooping Nontermination

While in the previous section we restricted ourselves to loops (though for every
forbidden pattern strategy), we now aim at possibly nonlooping nonterminating
TRSs, but only consider innermost strategies. More precisely, we consider the
variant of innermost rewriting which corresponds to ΠÑ where Π “ {p`, ε,Aq |
` P Q} for some set of terms Q. The corresponding rewrite relation is qrstep
within IsaFoR, and it generalizes rewriting without strategy (Q “ H) and in-
nermost rewriting (Q “ {` | ` Ñ r P R}). To ease the presentation, in the
paper we just consider the special cases ÑR and iÑR in the following. In total,
we discuss three different techniques which can be used to disprove termination
for nonlooping nonterminating TRSs. One disregards the strategy completely
(§ 4.1), one performs rewrite steps which may violate the strategy (§ 4.2), and
one directly constructs infinite possibly nonlooping derivations (§ 4.3).

4.1 Switching between Innermost Termination and Termination

Example 11. Let R1 be a confluent overlay TRS which encodes a Turing machine
A via innermost rewriting. We assume that the computation starts in a constant
tminit which represents the initial configuration of A. Now consider the TRS R “

R1 Y {run-againpxq Ñ run-againptminitq} where run-again is some fresh symbol.

Obviously, R is not innermost terminating: if A terminates in some final con-
figuration represented by a term t, then run-againptminitq

iÑ˚
R run-againptq iÑR

run-againptminitq is an innermost loop. Otherwise, there is an infinite evaluation
of run-againptminitq when trying to rewrite the argument tminit to a normal form.

Observe that in the first case, the derivation may be long and thus hard to
find, e.g., A may compute the Ackermann function; and in the latter case, there
might be no looping derivation at all.

9

However, disproving termination of R is simple when disregarding the strat-
egy: the loop run-againptminitq ÑR run-againptminitq is easily detected. Hence, for
nontermination analysis one tries to get rid of strategy restrictions, and indeed
there are known criteria where SN p iÑRq and SN pÑRq coincide: for example, lo-
cally confluent overlay TRSs fall into this class [8]. Thus, the simple loop above
constitutes a valid innermost nontermination proof.

We formalized the criterion of [8], though we did not follow the original proof
structure, but developed a simpler proof via dependency pairs [1]. To this end,
we first integrated a similar theorem for DP problems, as it is utilized in AProVE,
cf. switch-to-innermost-proc in Innermost Switch.thy.

Theorem 12. Let P and R be TRSs such that R is locally confluent and such
that there is no overlap between P and R. Then any pP,Rq chain shows the
existence of some innermost pP,Rq chain.

Theorem 12 can not only be used on its own—to switch from innermost
termination to termination for DP problems—but it can also be utilized to derive
Gramlich’s result to switch from innermost termination to termination for TRSs.

Theorem 13 ([8]). Let R be some finite TRS, let there be infinitely many
symbols. If R is locally confluent and overlay, then SN pÑRq ùñ SN p iÑRq.

Proof. Let P be the set of dependency pairs of R. If R is not terminating,
then by soundness of dependency pairs there must be some pP,Rq chain. By
Theorem 12 we conclude that there also is some innermost pP,Rq chain: R is
locally confluent by assumption and there is no overlap between P and R since
R is an overlay TRS. Finally, by completeness of dependency pairs we conclude
from the innermost chain that R must be innermost nonterminating. [\

The formalization of this proof was straightforward: IsaFoR already contained
the required results on critical pairs, confluence, and dependency pairs [18,21], cf.
switch-to-innermost-locally-confluent-overlay-finite in Innermost Switch.thy.

The formalization also reveals side conditions which one never finds in paper
proofs: Finiteness of R and an unbounded supply of function symbols are taken
for granted, but are crucial to construct fresh function symbols (fresh symbols
are required in order to build the set of dependency pairs). With more bureau-
cracy, one would be able to drop the condition that R is finite—by arguing that
in an infinite reduction only countably many symbols can occur, and by im-
plementing Hilbert’s hotel one can always construct enough fresh symbols—but
since for certification we are only interested in finite TRSs, we did not spend
this additional effort.

In order to guarantee local confluence we had to provide new means for
checking joinability. Whereas in [18] the main algorithm was a comparison of
normal forms of s and t, this is no longer the best solution in our setting, since
R is usually nonterminating. To this end, we now offer a breadth-first-search
algorithm to check joinability. The certificate just has to set a limit on the
search depth which ensures termination of the algorithm.

10

In total, we can now easily certify innermost nontermination proofs like the
one for Example 11: the certificate just has to contain the looping derivation
run-againptminitq ÑR run-againptminitq and an indication in how many steps each
critical pair of R can be joined.

4.2 Rewriting and Narrowing Dependency Pairs

In this section we consider two techniques of [7] that allow to ignore the strategy
for one step. Given a DP problem pP,Rq, they replace one of the pairs sÑ t in
P by new ones which result from rewriting or narrowing sÑ t.

One advantage over the result from the previous subsection is that we only
need unique normal forms for the usable rules while previously we had to consider
the whole TRS. Here, the usable rules of a term t are any subset Uptq of R
such that whenever tσ iÑ˚

R s for some σ which instantiates all variables by
normal forms, then in this derivation all applied rules must be from Uptq. There
are various estimations of usable rules where the simplest one is provided in
[1]. The following theorem already generalizes [7, Thm. 31] which requires non-
overlappingness instead of unique normal forms.

Theorem 14. Let pP Z {s Ñ t},Rq be a DP problem and suppose t ÑR,p t
1

with rule `Ñ r P R and substitution µ. If for U “ Upt|pq the rewrite relation iÑU
has unique normal forms and there are only trivial critical pairs between ` Ñ r
and U then the following holds: if pPZ{sÑ t1},Rq is innermost nonterminating
then pP Z {sÑ t},Rq is also innermost nonterminating.

In the formalization we closely followed the original paper proof where we
were able to slightly relax the preconditions: it is sufficient to consider the usable
rules with respect to all arguments of t|p instead of t|p itself. To check that U
has unique normal forms we use the following easy but sufficient criterion: if all
critical pairs of U at the root level are trivial then iÑU is confluent and thus has
unique normal forms. The following TRS can be shown innermost nonterminat-
ing via Theorem 14, but it requires the more relaxed preconditions.

Example 15. Consider the TRS R consisting of R1 of Example 11 and the rules:

cpx, yq Ñ x cpx, yq Ñ y fpaq Ñ fpcpa, tminitqq

Note that the result from the previous subsection is not applicable, since the
system is not locally confluent. However, since Upaq “ H and Uptminitq “ R1 is
confluent, we can rewrite the dependency pair f7paq Ñ f7pcpa, tminitqq to f7paq Ñ
f7paq and obtain an obvious loop.

To certify such a nontermination proof, one only has to provide the rewrite
step that is performed and a nontermination proof for the modified problem. All
preconditions are automatically checked by CeTA.

The second technique considers narrowing of dependency pairs, where a rule
sÑ t P P is first instantiated to sσ Ñ tσ and subsequently tσ gets rewritten to

11

u, yielding a new rule sσ Ñ u. Since instantiation is obviously correct for nonter-
mination analysis, completeness of narrowing is a straightforward consequence of
the completeness result for rewriting, cf. Rewriting.thy, Instantiation.thy,
and Narrowing.thy.

4.3 Nonterminating Derivations

To finally detect nontermination, one requires a technique which actually finds
infinite derivations. As stated before, one can consider loops t Ñ` Crtµs, how-
ever, there are also techniques which are able to detect a larger class of nonter-
minating derivations [5,17] which are both available in CeTA.

The idea in [5] is to derive pattern rules of the form s σn τ ãÑ t δn µ which
state that for each n there is a rewrite sequence sσnτ Ñ` tδnµ. To this end,
there are several inference rules which allow to derive pattern rules, and there is
a sufficient criterion when a pattern rule implies nontermination.

Example 16. Consider the following nonterminating TRS.

spxq ą 0Ñ true 0 ą y Ñ false

spxq ą spyq Ñ x ą y fptrue, x, yq Ñ fpx ą y, spxq, spyqq

It is nonlooping, as in the infinite derivation

fptrue, s2p0q, s1p0qq Ñ fps2p0q ą s1p0q, s3p0q, s2p0qq

Ñ2 fptrue, s3p0q, s2p0qq Ñ fps3p0q ą s2p0q, s4p0q, s3p0qq

Ñ3 fptrue, s4p0q, s3p0qq Ñ . . .

it takes more and more steps to rewrite sn`1p0q ą snp0q to true when n is
increased. However, using the inference rules, one can first derive the pattern
rule pspxq ą spyqq {x{spxq, y{spyq}n {x{spxq, y{0} ãÑ true∅n∅ which states that
it is possible to rewrite each term sn`2pxq ą sn`1p0q to true (∅ denotes the empty
substitution). And afterwards, it is easy to combine this pattern rule with the
rule for f to detect nontermination, again using the methods of [5].

To be able to certify this kind of nontermination proofs, in Nonloop.thy

we first proved correctness of all inference rules on an abstract level, e.g., where
substitutions are modeled as functions from variables to terms. In order to check
concrete proofs, in Nonloop Impl.thy we then introduced a datatype to repre-
sent proofs, i.e., sequences of inference steps, where also the type of substitutions
was changed from the abstract type to a list based representation.

Using this approach, most of the paper proofs have been easily integrated
into Isabelle. We here only report on some issues we had to solve during the
formalization. To this end, consider the following two inference rules of [5].

s∅n∅ ãÑ t∅n∅
s σn∅ ãÑ trzsp pσ Y {z{trzsp}qn {z{t|p}

if p P Posptq, s “ t|pσ, z is fresh (III)

s σns µs ãÑ t σnt µt

s pσsρq
n µs ãÑ t pσtρq

n µt
if δρ “ ρδ for each δ P {σs, µs, σt, µt} (VII)

12

One of the small problems we encountered is the underspecification in Rule
(III): the condition “z is fresh” does not contain the information w.r.t. which
other variables z has to be fresh—in the formalization this is clarified, namely
Vpsq Y Vptq Y

⋃
x:σpxq‰xp{x}Y Vpσpxqqq.

Moreover, there have been several operations on substitutions which first had
to be defined, e.g. for domain renamings [5, Def. 3], one defines substitutions
like {xρ{sρ | x{s P σ} where ρ has some further properties. Before showing
properties of this substitution, in the formalization we first had to prove that
this substitution is well-defined, i.e., that the properties of ρ ensure that xρ is
always a variable, and that there are no conflicting assignments.

Further operations on substitutions became necessary for certification. For
example, in Rule (VII) one has to check equality of substitutions. Here, it turned
out that checking equality of the lists which represent the substitutions was not
sufficient, as some correct proofs have been rejected by our certifier, e.g., since
rpx, tq, py, sqs ‰ rpy, sq, px, tq, px, tqs, but both lists represent the same substitu-
tion {x{t, y{s}. Instead, we had to implement a function subst-eq which decides
whether two substitutions which are represented by lists are identical.

We finally remark on an extension of the original approach that was required
in the formalization: while the technique in [5] is presented on the level of TRSs,
the implementation in AProVE also applies the method on DP problems, where
in the inference rules one has to distinguish between P- and R-steps. Moreover,
AProVE also uses the following inference rule, which was not described in [5].

s σns µs ãÑ t σnt µt

sσks σ
n
s µs ãÑ tσkt σ

n
t µt

(X)

All these extensions have been integrated in IsaFoR and CeTA.
The technique of [17] is quite similar to [5] in the sense that there are also

derivation patterns which can be derived via some inference rules, until some
pattern is detected which immediately implies nontermination. In fact, [5] is an
extension of [17] as the latter only considers string rewrite systems, i.e., TRSs
with only unary function symbols. But since it is currently unknown whether [5]
can fully simulate [17], we also formalized the technique of [17] directly, which
was a relatively easy task: since everything in [17] works on strings, there was
no tedious reasoning on substitutions and renamings of variables required, cf.
Nonloop SRS.thy.

For certification we require the full inference tree that derives the final pat-
tern, where in each inference rule all parameters have to be specified. For exam-
ple, for (III) we explicitly require σ, p, and z; and for (VII) the substitution ρ
has to be provided. Moreover, for pretty-printing and early error detection we
require that every derived pattern is explicitly stated within the certificate.

5 Experiments and Partial Nontermination Proofs

We tested our certifier using the TRSs from the termination problem database
(TPDB 8.0.7). To be more precise, we considered all 596 first-order TRSs where

13

at least one tool in 2013 has generated a nontermination proof. In our experi-
ments, we tested the following termination tools which all print their proofs in
a structured proof format (CPF).

‚ AProVE’13 and TTT2’13 are the versions of AProVE and TTT2 that partici-
pated in the certified category of the termination competition in 2013. Both
tools are restricted to nontermination techniques of [23].

‚ AProVE’14 is the current version of AProVE. It can even apply nontermina-
tion techniques that are not supported by CeTA.

‚ TTT2’14 is the current version of TTT2.

AProVE’13 AProVE’14 TTT2’13 TTT2’14

successful nontermination proofs 276 575 221 417
certified proofs 276 563 221 417
partially certified proofs – 12 – –

Table 1. Experimental data.

Table 1 clearly shows the significance of our formalizations: we doubled the
number of certifiable nontermination proofs for AProVE, and can now certify
98 % of the generated proofs.

Since AProVE’13, TTT2’13, and TTT2’14 use only techniques supported by
CeTA, it comes as no surprise that all these proofs were certified. In contrast, 12
proofs by AProVE’14 were refused as the applied nontermination techniques are
not available in CeTA, e.g., proofs for equational rewrite systems (modulo AC).

To still increase the reliability for these proofs, we added support for partial
proofs in CeTA. To be more precise, we added a proof technique called “unknown
proof” to CPF which logically states that the certifier may assume the impli-
cation SN pa1q ^ ¨ ¨ ¨ ^ SN panq ùñ SN pa0q where each ai may be some
arbitrary binary relation, including textual descriptions like “equational rewrite
relation of . . . ” which are not formally specified. As a consequence, every tech-
nique that is not supported by CeTA can be exported as an unknown proof, and
then CeTA can still check all the proofs for the subgoals SN paiq with i ą 0.

Using partial certification, CeTA can check in average 70 % of the proof steps
within each of the 12 partial proofs. Interestingly, due to the partial certification
capabilities of CeTA, we could even spot and fix one real soundness bug within
AProVE. In one example a terminating TRS R1 was transformed into a nonter-
minating TRS R2 although it was claimed that the termination behavior of R1

and R2 is equivalent. Since AProVE was not able to finally disprove termination
of R2—and hence there was no complete nontermination proof of R1—this bug
was only discovered due to partial certification, where even for incomplete proofs
every single nontermination technique could be checked by CeTA.

14

To support partial certification in CeTA, major restructuring was required.
Previously, there was a hierarchical structure of nontermination proofs where
the hierarchy was given by the input: nontermination proofs for DP problems
have been a leaf, proofs for TRSs have been been the next layer, and proofs for
relative termination have been at the top of the hierarchy. However, now for every
input there is the “unknown proof” which may contain subproofs for all other in-
puts. Therefore, the proof types for every input are modeled via one large mutual
recursive datatype (it is the datatype definition . . . -nontermination-proof at the
beginning of Check Nontermination.thy), which takes considerably more time
to process by Isabelle than the hierarchical sequence of non-mutual recursive
datatypes that we had before. Similarly, also all functions and proofs for the
overall certification procedure had to be defined and proven simultaneously for
all inputs. Whereas most of this adaptation was straightforward, we also encoun-
tered problems, that some packages in Isabelle do not support mutual recursion.
For example, in order to define our parser for CPF, we first had to add support
for mutual recursion to the partial functions package of [14]. We refer to [19] for
further details on this extension.

In order to obtain input examples for CeTA’s forbidden pattern loop check,
we integrated support for forbidden pattern loops into TTT2. More precisely, we
added a forbidden pattern loop check to the already present unfold strategy
which searches for loops. To that end, we exported IsaFoR’s loop checking proce-
dure to OCaml using Isabelle’s code generator. Though interfacing IsaFoR’s data
structures required some overhead, this proved to be a fast way to integrate a re-
liable implementation in TTT2. Support of forbidden pattern loops allows TTT2’14
to show nontermination of all those TRSs in our test set of 596 problems that
feature an innermost, outermost, or context-sensitive strategy (197 problems in
total), as well as Example 3. In total, by just integrating CeTA’s forbidden pat-
tern loop check, we could nearly double the number of nontermination proofs of
TTT2’13: from 221 to 417, cf. Table 1.

6 Conclusion

In summary, we formalized several new nontermination techniques which cover
nonlooping derivations and looping derivations under strategies. In total this
formalization increased the size of IsaFoR by around 10k lines. Due to our work,
CeTA is now able to certify the vast majority of nontermination proofs that are
generated by automated tools for TRSs.

Acknowledgments The authors are listed in alphabetical order regardless of
individual contributions or seniority.

References

1. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. The-
oretical Computer Science, 236:133–178, 2000.

15

2. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

3. F. Blanqui and A. Koprowski. CoLoR: A Coq library on well-founded rewrite rela-
tions and its application to the automated verification of termination certificates.
Mathematical Structures in Computer Science, 4:827–859, 2011.

4. E. Contejean, P. Courtieu, J. Forest, O. Pons, and X. Urbain. Automated certified
proofs with CiME3. In Proc. RTA ’11, volume 10 of LIPIcs, pages 21–30, 2011.

5. F. Emmes, T. Enger, and J. Giesl. Proving non-looping non-termination automat-
ically. In Proc. IJCAR ’12, volume 7364 of LNAI, pages 225–240, 2012.

6. J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termi-
nation proofs in the DP framework. In Proc. IJCAR ’06, volume 4130 of LNAI,
pages 281–286, 2006.

7. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and im-
proving dependency pairs. Journal of Automated Reasoning, 37(3):155–203, 2006.

8. B. Gramlich. Abstract relations between restricted termination and confluence
properties of rewrite systems. Fundamenta Informaticae, 24:3–23, 1995.

9. B. Gramlich and F. Schernhammer. Extending context-sensitivity in term rewrit-
ing. In Proc. WRS ’09, volume 15 of EPTCS, pages 56–68, 2010.

10. F. Haftmann and T. Nipkow. Code generation via higher-order rewrite systems.
In Proc. FLOPS 2010, volume 6009 of LNCS, pages 103–117, 2010.

11. B. Huffman and O. Kuncar. Lifting and transfer: A modular design for quotients
in Isabelle/HOL. In Proc. CPP ’13, volume 8307 of LNCS, pages 131–146, 2013.

12. M. Korp, C. Sternagel, H. Zankl, and A. Middeldorp. Tyrolean Termination Tool
2. In Proc. RTA ’09, volume 5595 of LNCS, pages 295–304, 2009.

13. A. Krauss. Partial and nested recursive function definitions in higher-order logic.
Journal of Automated Reasoning, 44(4):303–336, 2010.

14. A. Krauss. Recursive definitions of monadic functions. In Proc. PAR ’10, volume 43
of EPTCS, pages 1–13, 2010.

15. S. Lucas. Context-sensitive computations in functional and functional logic pro-
grams. Journal of Functional and Logic Programming, 1:1–61, 1998.

16. T. Nipkow, L.C. Paulson, and M. Wenzel. Isabelle/HOL - A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

17. M. Oppelt. Automatische Erkennung von Ableitungsmustern in nichtterminieren-
den Wortersetzungssystemen. Diploma thesis, HTWK Leipzik, Germany, 2008.

18. C. Sternagel and R. Thiemann. Formalizing Knuth-Bendix orders and Knuth-
Bendix completion. In Proc. RTA ’13, volume 21 of LIPIcs, pages 287–302, 2013.

19. R. Thiemann. Mutually recursive partial functions. Archive of Formal Proofs,
February 2014. http://afp.sf.net/entries/Partial_Function_MR.shtml, For-
mal proof development.

20. R. Thiemann, J. Giesl, and P. Schneider-Kamp. Deciding innermost loops. In
Proc. RTA ’08, volume 5117 of LNCS, pages 366–380, 2008.

21. R. Thiemann and C. Sternagel. Certification of termination proofs using CeTA. In
Proc. TPHOLs 2009, volume 5674 of LNCS, pages 452–468, 2009.

22. R. Thiemann and C. Sternagel. Loops under strategies. In Proc. RTA ’09, volume
5595 of LNCS, pages 17–31, 2009.

23. R. Thiemann and C. Sternagel. Certification of nontermination proofs. In Proc.
ITP ’12, volume 7406 of LNCS, pages 266–282, 2012.

24. R. Thiemann, C. Sternagel, J. Giesl, and P. Schneider-Kamp. Loops under strate-
gies . . . continued. Proc. IWS ’10, 44:51–65, 2010.

16

http://afp.sf.net/entries/Partial_Function_MR.shtml

	Certification of Nontermination Proofs using Strategies and Nonlooping Derivations

