(VAR N XS X Y YS ZS V1 V2 X1 X2)
(RULES 
U101(tt,N,XS) -> fst(splitAt(activate(N),activate(XS)))
U11(tt,N,XS) -> snd(splitAt(activate(N),activate(XS)))
U21(tt,X) -> activate(X)
U31(tt,N) -> activate(N)
U41(tt,N) -> cons(activate(N),n__natsFrom(n__s(activate(N))))
U51(tt,N,XS) -> head(afterNth(activate(N),activate(XS)))
U61(tt,Y) -> activate(Y)
U71(tt,XS) -> pair(nil,activate(XS))
U81(tt,N,X,XS) -> U82(splitAt(activate(N),activate(XS)),activate(X))
U82(pair(YS,ZS),X) -> pair(cons(activate(X),YS),ZS)
U91(tt,XS) -> activate(XS)
afterNth(N,XS) -> U11(and(isNatural(N),n__isLNat(XS)),N,XS)
and(tt,X) -> activate(X)
fst(pair(X,Y)) -> U21(and(isLNat(X),n__isLNat(Y)),X)
head(cons(N,XS)) -> U31(and(isNatural(N),n__isLNat(activate(XS))),N)
isLNat(n__nil) -> tt
isLNat(n__afterNth(V1,V2)) -> and(isNatural(activate(V1)),n__isLNat(activate(V2)))
isLNat(n__cons(V1,V2)) -> and(isNatural(activate(V1)),n__isLNat(activate(V2)))
isLNat(n__fst(V1)) -> isPLNat(activate(V1))
isLNat(n__natsFrom(V1)) -> isNatural(activate(V1))
isLNat(n__snd(V1)) -> isPLNat(activate(V1))
isLNat(n__tail(V1)) -> isLNat(activate(V1))
isLNat(n__take(V1,V2)) -> and(isNatural(activate(V1)),n__isLNat(activate(V2)))
isNatural(n__0) -> tt
isNatural(n__head(V1)) -> isLNat(activate(V1))
isNatural(n__s(V1)) -> isNatural(activate(V1))
isNatural(n__sel(V1,V2)) -> and(isNatural(activate(V1)),n__isLNat(activate(V2)))
isPLNat(n__pair(V1,V2)) -> and(isLNat(activate(V1)),n__isLNat(activate(V2)))
isPLNat(n__splitAt(V1,V2)) -> and(isNatural(activate(V1)),n__isLNat(activate(V2)))
natsFrom(N) -> U41(isNatural(N),N)
sel(N,XS) -> U51(and(isNatural(N),n__isLNat(XS)),N,XS)
snd(pair(X,Y)) -> U61(and(isLNat(X),n__isLNat(Y)),Y)
splitAt(0,XS) -> U71(isLNat(XS),XS)
splitAt(s(N),cons(X,XS)) -> U81(and(isNatural(N),n__and(n__isNatural(X),n__isLNat(activate(XS)))),N,X,activate(XS))
tail(cons(N,XS)) -> U91(and(isNatural(N),n__isLNat(activate(XS))),activate(XS))
take(N,XS) -> U101(and(isNatural(N),n__isLNat(XS)),N,XS)
natsFrom(X) -> n__natsFrom(X)
s(X) -> n__s(X)
isLNat(X) -> n__isLNat(X)
nil -> n__nil
afterNth(X1,X2) -> n__afterNth(X1,X2)
cons(X1,X2) -> n__cons(X1,X2)
fst(X) -> n__fst(X)
snd(X) -> n__snd(X)
tail(X) -> n__tail(X)
take(X1,X2) -> n__take(X1,X2)
0 -> n__0
head(X) -> n__head(X)
sel(X1,X2) -> n__sel(X1,X2)
pair(X1,X2) -> n__pair(X1,X2)
splitAt(X1,X2) -> n__splitAt(X1,X2)
and(X1,X2) -> n__and(X1,X2)
isNatural(X) -> n__isNatural(X)
activate(n__natsFrom(X)) -> natsFrom(activate(X))
activate(n__s(X)) -> s(activate(X))
activate(n__isLNat(X)) -> isLNat(X)
activate(n__nil) -> nil
activate(n__afterNth(X1,X2)) -> afterNth(activate(X1),activate(X2))
activate(n__cons(X1,X2)) -> cons(activate(X1),X2)
activate(n__fst(X)) -> fst(activate(X))
activate(n__snd(X)) -> snd(activate(X))
activate(n__tail(X)) -> tail(activate(X))
activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
activate(n__0) -> 0
activate(n__head(X)) -> head(activate(X))
activate(n__sel(X1,X2)) -> sel(activate(X1),activate(X2))
activate(n__pair(X1,X2)) -> pair(activate(X1),activate(X2))
activate(n__splitAt(X1,X2)) -> splitAt(activate(X1),activate(X2))
activate(n__and(X1,X2)) -> and(activate(X1),X2)
activate(n__isNatural(X)) -> isNatural(X)
activate(X) -> X
)