(VAR x y z) (RULES ge(0,0) -> true ge(s(x),0) -> ge(x,0) ge(0,s(0)) -> false ge(0,s(s(x))) -> ge(0,s(x)) ge(s(x),s(y)) -> ge(x,y) minus(0,0) -> 0 minus(0,s(x)) -> minus(0,x) minus(s(x),0) -> s(minus(x,0)) minus(s(x),s(y)) -> minus(x,y) plus(0,0) -> 0 plus(0,s(x)) -> s(plus(0,x)) plus(s(x),y) -> s(plus(x,y)) div(x,y) -> ify( ge(y,s(0)), x, y) ify( false, x, y) -> divByZeroError ify( true, x, y) -> if( ge(x,y), x, y) if ( false, x, y) -> 0 if ( true, x, y) -> s(div( minus(x,y), y)) div(plus(x, y), z) -> plus(div(x, z), div(y, z)) ) (COMMENT like div_notCeTerminating + last div(plus(..),z) rule INFINITE reduction: we first define the term 0/1 as div(plus(s(0),s(0)), s(s(0))) It can be reduced to both 0 and s(0): 0/1 ->* div(s(s(0)), s(s(0))) ->* s(div(0, s(s(0)))) ->* s(0) 0/1 -> plus( div(s(0), s(s(0))), div(s(0), s(s(0)))) ->* plus( 0, div(s(0), s(s(0)))) ->* plus(0,0) -> 0 Thus, we can reduce div(0,0/1) -> ify(ge(0/1,s(0)), 0, 0/1) ->* ify(ge(s(0),s(0)), 0, 0/1) ->* ify(true, 0, 0/1) -> if(ge(0, 0/1), 0, 0/1) ->* if(ge(0,0), 0, 0/1) ->* if(true, 0, 0/1) -> s(div(minus(0,0/1), 0/1)) ->* s(div(minus(0,0), 0/1)) -> s(div(0, 0/1)) ->* s(s(div(0,0/1))) ->+ ... of course, if one adds the Ce-rules instead of the div(plus(.),z) -> .. rule then one can build the term 0/1 as c(0,1) which shows that div_notCeTerminating is not Ce-terminating. )