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INTRODUCTION

Security protocols and their formal analysis: a brief summary of the past 20
years of research.
• Automatic verification tools
• Formal models and operational semantics
• Decision results
• The role of rewriting techniques

Goals of the lectures:
• A rewriting-centered view
• Results and open questions in rewriting related to security protocols.
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SUMMARY

Part 1: Protocols: examples and semantics. Intruder deduction systems.
Algebraic theories. Locality.

Part 2: Bounded number of sessions: deducibility constraints. The small attack
property. Solving deducibility constraints: the Dolev-Yao case.

Part 3: Solving deducibility constraints in equational theories. The finite variant
property and examples. The small attack property: constraint solving
methodology. Combination problems and one-step deducibility constraints.
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1. PROTOCOLS: EXAMPLES AND
SEMANTICS
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SUMMARY 1

Basic examples and definitions Security protocols, operational semantics.

Algebraic properties of security primitives Examples, relevant equational theories

Properties of intruder systems (1)

Recognizability preservation

Locality and locality proofs
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THE MOST POPULAR EXAMPLE

How it is usually described:

A → B : {A, NA}pub(B)

B → A : {NA, NB}pub(A)

A → B : {NB}pub(B)

where

A, B are two agents,

NA, NB are newly generated random number: nonces.

{m}k models the encryption of the message m with the (public) key k

pub(X) is the public key of X, which is supposed to be now by all other agents.

The security goal is a mutual authentication: if a, b are two agents running the protocol, at the
end, a holds a nonce nb generated by b and b holds a nonce na generated by agent a. These
two nonces must also be unknown to the outside.
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THE MOST POPULAR EXAMPLE (2)

A protocol is a finite set of roles (pattern-matching or spi-calculus version):

A(a, b) : νNA → {a, NA}pub(b)

{NA, y}pub(a) → {y}pub(b)

B(a, b) : νNB {a, x}pub(b) → {x, NB}pub(a)

{NB}pub(b) →
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THE MOST POPULAR EXAMPLE (2)

A protocol is a finite set of roles (pattern-matching or spi-calculus version):

A(a, b) : νNA → {a, NA}pub(b)

{NA, y}pub(a) → {y}pub(b)

B(a, b) : νNB {a, x}pub(b) → {x, NB}pub(a)

{NB}pub(b) →

Applied π-calculus/ explicit destructors version:

A(a, b) : νNA → {a, NA}pub(b)

y → if π1(dec(y, priv(a))) = NA then {π2(dec(y, priv(a)))}pub(b)

B(b) : νNB x → {π2(dec(x, priv(b))), NB}
pub(π1(dec(x,priv(b))))

z → if dec(z, priv(b)) = NB then OK

Implicitly, if some projection or decryption attempt fails, the message is not sent (and the process aborts)
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THE MOST POPULAR EXAMPLE (3)

Any number of copies (the ! construction) of any instances of the roles may run concurrently:

P = A(a1, b1)! ‖ A(a2, b2)! ‖ · · · ‖ A(an, bn)! ‖ · · ·

B(a1)! ‖ B(a2)! ‖ · · · ‖ B(an)! ‖ · · ·
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THE MOST POPULAR EXAMPLE (3)

Any number of copies (the ! construction) of any instances of the roles may run concurrently:

P = A(a1, b1)! ‖ A(a2, b2)! ‖ · · · ‖ A(an, bn)!

B(a1)! ‖ B(a2)! ‖ · · · ‖ B(an)!

For most security properties, a fixed number of instances is sufficient: 2 agents for secrecy, 3 agents
for authentication... ([CLC03]).
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THE MOST POPULAR EXAMPLE (3)

Any number of copies (the ! construction) of any instances of the roles may run concurrently:

P = A(a1, b1)! ‖ A(a2, b2)! ‖ · · · ‖ A(an, bn)!

B(a1)! ‖ B(a2)! ‖ · · · ‖ B(an)!

For most security properties, a fixed number of instances is sufficient: 2 agents for secrecy, 3 agents
for authentication... ([CLC03]).
The attackers controls the network: (s)he may intercept, delay, forge messages.

∀I. P ‖ I

Defines a (infinitely branching, non-terminating) transition system.
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ATTACKER’S CAPABILITIES (SIMPLE CASE)

From a set of messages T , I may forge any message that can be obtained using the rules

x y

Symenc
[x]y

x y

Pair
< x, y >

x y

PubEnc
{x}pub(y)

[x]y y

Dec
x

< x, y >

π1

x

< x, y >

π2

y

{x}pub(y) priv(y)
Pdec

x

Equivalently the second set of rules can be replaced by:

x y

Dec(x, y)

x

π1(x)

x

π2(x)

x y

Pdec(x, y)

Together with the rewrite system

Dec([x]y, y) → x π1(< x, y >) → x π2(< x, y >) → y

PDec({x}pub(y), priv(y)) → x
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INTRUDER CAPABILITIES (2)

I can forge t using T , if T ⊢ t using the intruder deduction system.

Equivalently, intruder capabilities are described by a convergent term rewriting system (modulo
associativity and commutativity, see later).
I can forge t from T if

∃ζ. ζ[T ] ↓= t

ζ is the recipe: any term built with public symbols and data from corrupted agents with as many
variables as elements of T . ζ[T ] = ζ{x1 7→ t1; . . . ; xn 7→ tn} if T = {t1, . . . , tn}

Example:
T = {a, b, [s]<a,b>}

ζ = dec(x3, < x1, x2 >)

ζ[T ] ↓=

Public symbols usually consist of all function symbols, except the constants representing private data
and the symbol priv() which builds private decryption keys.
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OPERATIONAL SEMANTICS (EXAMPLE)

A(a, b) : νNA → {a, NA}pub(b)

y → if π1(dec(y, priv(a))) = NA then {π2(dec(y, priv(a)))}pub(b)

B(b) : νNB x → let x1 = π1(dec(x, priv(b))), x2 = π2(dec(x, priv(b))) in {x1, NB}pub(x2)

z → if dec(z, priv(b)) = NB then OK

Consider A(a, c)‖B(b). a, b honest and c is corrupted.

0

B

@

a : pub(c), priv(agenta), ...

b : pub(a), priv(b), ...

I : pub(b), priv(c), ...

1

C

A

{a,na}pub(c)
−−−−−−−−−→

0

B

B

B

B

@

a : pub(c), priv(agenta), nA,

stage1

b : pub(a), priv(b)

I : pub(b), priv(c), {a, nA}pub(c)

1

C

C

C

C

A

{a,na}pub(b)
−−−−−−−−−→

0

B

B

B

B

B

B

@

a : pub(c), priv(agenta), nA,

stage1

b : pub(a), priv(b), nB

x1 = nA, x2 = a, stage1

I : pub(b), priv(c), {a, nA}pub(c)

1

C

C

C

C

C

C

A
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OPERATIONAL SEMANTICS (EXAMPLE CNTD)

A(a, b) : νNA → {a, NA}pub(b)

y → if π1(dec(y, priv(a))) = NA then {π2(dec(y, priv(a)))}pub(b)

B(b) : νNB x → let x1 = π1(dec(x, priv(b))), x2 = π2(dec(x, priv(b))) in {x1, NB}pub(x2)

z → if dec(z, priv(b)) = NB then OK

0

B

B

B

B

B

B

@

a : pub(c), priv(agenta), nA,

stage1

b : pub(a), priv(b), nB

x1 = nA, x2 = a, stage1

I : pub(b), priv(c), {a, nA}pub(c)

1

C

C

C

C

C

C

A

{nAnB}pub(a)
−−−−−−−−−−−→

0

B

B

B

B

B

B

B

B

B

@

a : pub(c), priv(agenta), nA,

stage1

b : pub(a), priv(b), nB

x1 = nA, x2 = a, stage1

I : pub(b), priv(c), {a, nA}pub(c)

{nAnB}pub(a)

1

C

C

C

C

C

C

C

C

C

A

{nAnB}pub(a)
−−−−−−−−−−−→

0

B

B

B

B

B

B

B

B

B

@

a : pub(c), priv(agenta), nA,

stage2, y = {nB}pub(a)

b : pub(a), priv(b), nB

x1 = nA, x2 = a, stage1

I : pub(b), priv(c), {a, nA}pub(c)

{nAnB}pub(a)

1

C

C

C

C

C

C

C

C

C

A

{nB}pub(c)
−−−−−−−−→

0

B

B

B

B

B

B

a : pub(c), priv(agenta), nA,

stageend, y = {nB}pub(a)

b : pub(a), priv(b), nB

1

C

C

C

C

C

C
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SECURITY PROPERTIES

Secrecy : If nA is generated in an instance A(a, b) in which both a and b are
honest, then there is no state in which I can deduce nA.

If nb is generated in an instance B(b) in which both b and x1 are honest,
then there is no state in which I can deduce nb.

Agreement : For each instance A(a, b) in which both a and b are honest and a

(resp. b) reached the end state, then x1 = nA and dec(y, priv(nA)) = nB .

To be precise we should index variables, agent names, nonces, with the
role instances. Agreement properties then require a mapping of roles; there
are several possible definitions.

Equivalence properties For instance privacy (anonymity):

P (a, b) ∼o P (b, a)
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THE PRESERVATION OF RECOGNIZABILITY THEOREM

Theorem : Alternating two-way automata only accept recognizable languages.
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THE PRESERVATION OF RECOGNIZABILITY THEOREM

Theorem : Alternating two-way automata only accept recognizable languages.

q(f(x1, . . . , xn)) ← q1(x1), · · · , qn(xn)
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THE PRESERVATION OF RECOGNIZABILITY THEOREM

Theorem : Alternating two-way automata only accept recognizable languages.

q(f(x1, . . . , xn)) ← q1(x1), · · · , qn(xn)

q(xi) ← q1(f(x1, . . . , xn))
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THE PRESERVATION OF RECOGNIZABILITY THEOREM

Theorem : Alternating two-way automata only accept recognizable languages.

q(f(x1, . . . , xn)) ← q1(x1), · · · , qn(xn)

q(xi) ← q1(f(x1, . . . , xn))

q(x) ← q1(x), q2(x)
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THE PRESERVATION OF RECOGNIZABILITY THEOREM

Theorem : Alternating two-way automata only accept recognizable languages.

q(f(x1, . . . , xn)) ← q1(x1), · · · , qn(xn)

q(xi) ← q1(f(x1, . . . , xn))

q(x) ← q1(x), q2(x)

Application :
If L is a recognizable tree language, then the set of terms deducible from L by a
DY intruder is also recognizable.
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THE PRESERVATION OF RECOGNIZABILITY THEOREM

Theorem : Alternating two-way automata only accept recognizable languages.

q(f(x1, . . . , xn)) ← q1(x1), · · · , qn(xn)

q(xi) ← q1(f(x1, . . . , xn))

q(x) ← q1(x), q2(x)

Application :
If L is a recognizable tree language, then the set of terms deducible from L by a
DY intruder is also recognizable.

I({x}y) ← I(x), I(y)

I(< x, y >) ← I(x), I(y)

I(x) ← I({x}y), I(y)

I(x) ← I(< x, y >)

I(y) ← I(< x, y >)
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TREE AUTOMATA AND INTRUDER DEDUCTIONS (CNTD)

A generalization of the preservation theorem.

The H1 class [Nielson,Nielson, Seidl 2003; Goubault-Larrecq 2005].

Q(f(x1, . . . , xn)) ← Q1(t1), . . . , Qn(tn)

Q(x) ← Q1(t1), . . . , Qn(tn)

Emptiness is DEXPTIME-complete.

→ a protocol verification tool.
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TREE AUTOMATA WITH ONE MEMORY

a
⊤
−→
b

qa f(qa, qa)
1=2

−−−−−−−→
λx1.h(x1)

q

g(q)
⊤

−−−−→
λx1.x1

q g(qa)
⊤

−−−−−−−→
λx1.h(x1)

q

f(q, q)
1=2

−−−−−−−→
λh(x1).x1

q
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TREE AUTOMATA WITH ONE MEMORY

a
⊤
−→
b

qa f(qa, qa)
1=2

−−−−−−−→
λx1.h(x1)

q

g(q)
⊤

−−−−→
λx1.x1

q g(qa)
⊤

−−−−−−−→
λx1.h(x1)

q

f(q, q)
1=2

−−−−−−−→
λh(x1).x1

q

f
�

�
�

P
P

P

g g

f a
�

�
�

P
P

P

a a
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TREE AUTOMATA WITH ONE MEMORY

a
⊤
−→
b

qa f(qa, qa)
1=2

−−−−−−−→
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TREE AUTOMATA WITH ONE MEMORY
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ONE COPY ONLY: MORE TREE AUTOMATA

[CL,Cortier 2001–2004]

A(a, b) : νNA → {a, NA}pub(b)

{NA, y}pub(a) → {y}pub(b)

B(a, b) : νNB {a, x}pub(b) → {x, NB}pub(a)

{NB}pub(b) →

Theorem : emptyness of tree automata with one memory is
DEXPTIME-complete.
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A PROTOCOL EXAMPLE

b, r are two public positive integers. bs mod r is the public key of EP and s is the
associated private key.
In a first authentication phase, the two parties agree on a session nonce Ns and
S owes the certified public key bs mod r.

1. EP → S : νN. hash(bN mod r, S, Ns, X)

2. S → EP : νNc. Nc

3. EP → S : N − s×Nc, X

Then S checks that the first message x and the last message y satisfy

x = hash((bs)Nc × b
y mod r, S, Ns, X)

The security property states that this verification is OK only if EP sent
N − s×Nc, X at step 3.
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ALGEBRAIC PROPERTIES

See also [Cortier,Delaune, Lafourcade 2005, Journal of Computer Security ]

DY:

Dec([x]y, y) → x π1(< x, y >) → x π2(< x, y >) → y

PDec({x}pub(y), priv(y)) → x

Signatures (Sign)

v(sign(x, k), pub(k)) → 1 u(sign(x, k), pub(k)) → x

decryption confusion (DC): DY +
[Dec(x, k)]k → x

Exercise: Find a simple protocol which is secure (e.g. keeps secrecy) for 1 session DY, but is insecure

with this additional rule.
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ALGEBRAIC PROPERTIES (2)

Homomorphic encryption (ECB): DY +

[< x, y >]k →< [x]k, [y]k >

Prefix (CBC): DY +

p([< x, y >]k) → [x]k

Blind signatures: Sign + DY +

unblind(blind(x, k), k) → x unblind(sign(blind(x, r), k), r) → sign(x, k)

Exclusive or

x ⊕ 0 = x x ⊕ x = 0 x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z

x ⊕ y = y ⊕ x
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ALGEBRAIC PROPERTIES (3)

Abelian Groups

x + 0 = x x + (−x) = 0 x + (y + z) = (x + y) + z

x + y = y + x

EP: AG(+), AG(×) +

(zx)y = zx×y zx × zy = zx+y

Combination of theories.
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LOCALITY: THE DY CASE

Theorem : If T ⊢ t, then there is a proof whose all nodes are in St(T, t).

Equivalenty: Let T, t be in normal form. If there is a recipe ζ such that ζ[T ] ↓= t,
then there is a recipe ζ0 such that ζ0[T ] ↓= t and, for every subterms ζ1 of ζ0,
ζ1[T ] ↓∈ St(T, t).

Corollary : Given T, t, whether t can be deduced from T is decidable in linear
time (and is PTIME-complete).
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LOCALITY: THE DY CASE: PROOF

We prove that for any recipe in normal form,

either ζ0[T ] ↓ is a subterm of some u ∈ T (Decomposition)

or else ζ0[T ] = f(ζ1[T ], . . . , ζn[T ]) and ζ0[T ] ↓= f(ζ1[T ] ↓, . . . , ζn[T ] ↓)

(Composition)

By induction on ζ0 (base case straightforward):

Use an innermost rewriting strategy.

Case analysis depending on the top symbol of ζ0:

top(ζ0) is a pair or an encryption : we fall in the second case

top(ζ0) is a projection : ζ0[T ] = πi(ζ1[T ]). The top symbol of ζ1 is not a pair.
Apply the induction hypothesis on ζ1: if there is no top redex we have a
composition, otherwise ζ1[T ] ↓∈ St(T ) and ζ0[T ] ↓∈ St(T ).

top(ζ0) is a decryption : ζ0 = dec(ζ1[T ], ζ2[T ]). If there is no top redex, then
we get a composition. Otherwise, apply the induction hypothesis to ζ1:
• if ζ1 is not empty and ζ1[T ] ↓ is a composition there cannot be any

top redex by irreducibility of ζ0
• otherwise, ζ1[T ] ↓= {u}k ∈ St(T ) (symmetric key case) and

ζ0[T ] ↓= u ∈ St(T )

Exercise: complete the proof for asymmetric encryption.
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LOCALITY (GENERAL CASE)

Almost all equational theories relevant to protocol verification can be
presented by a finite convergent rewrite system (possibly modulo AC).

Locality property:
If there is a recipe ζ such that ζ[t1, . . . , tn] ↓= t, then there is such a small
context ζ0.

There is a (efficiently computable) function F from finite sets of terms to
finite sets of terms such that

∀t1, . . . , tn, t, ∀ζ,∃ζ0,

t = ζ[t1, . . . , tn] ↓ =⇒ ∀ζ1 ∈ St(ζ0), ζ1[t1, . . . , tn] ↓∈ F (t1, . . . , tn, t)

Examples

• DY, xor theory: F (T ) is the set of subterms of T :
given t1, . . . , tn, t (in normal form), it is decidable in polynomial time
whether there is a ζ such that ζ such that ζ[t1, . . . , tn] ↓= t

• EP, homomorphic encryption, combined theories: requires a semantic
notion of subterms.
F (t) is obtained by (possibly) adding a fixed context on the top of a
subterm of t. (F (T ) computable in linear time). Rewriting techniques applied to security protocols – p.24/52
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LOCALITY: THE CASE OF AC-SYMBOLS

In case of AC-symbols, terms are flattened.

Equivalently, we need an unbounded number of inference rules, indexed by n:

u1 · · · un

(u1 + · · ·+ un) ↓

Exercise :Prove the locality theorem for the xor theory.
Hint: consider two versions of the n-premisses rule above: one in which
(u1 + · · ·+ un) ↓ has not + as a top symbol (decomposition) and one in which +

is the top symbol of the resulting term (composition)
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LOCALITY: THE CASE OF AC-SYMBOLS

In case of AC-symbols, terms are flattened.

Equivalently, we need an unbounded number of inference rules, indexed by n:

u1 · · · un

(u1 + · · ·+ un) ↓

Exercise :Prove the locality theorem for the xor theory.
Hint: consider two versions of the n-premisses rule above: one in which
(u1 + · · ·+ un) ↓ has not + as a top symbol (decomposition) and one in which +

is the top symbol of the resulting term (composition)

Infinite number of rules: the complexity of deducibility depends on the complexity
of one-step deducibility.

If, given t1, . . . , tn, t, the solvability of λ1t1 + · · ·+ λntn = t is in PTIME and the
deduction system is F -local, where F is a PTIME function, then deducibility is in
PTIME.

Typical examples: xor, Abelian groups: linear systems over F2 or Z are solvable
in PTIME.

More generally: solving linear systems + locality⇒ decision of intruder
Rewriting techniques applied to security protocols – p.25/52
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LOCALITY (CNTD)

For Abelian Groups and some more complex theories, we need to replace
“Subterm” by a semantic notion of subterms. A typical example is the
combination of theories: subterms are alien subterms. Then F might add a
(pure) context on top of the terms.

Example: for AG, we use a rule

u1 · · · un v1 · · · vm

(u1 + · · ·+ un − v1 · · · − vm) ↓

Open question: nice sufficient conditions on the rewrite system for locality.
(This is solved only when there is no AC symbols: [Basin & Ganzinger
2001], [CL, Treinen 2003]).
When there is no AC-symbol, a sufficient condition is the saturation
property (see also: finite variant property in part 2) of the intruder
deductions, w.r.t. an ordering isomorphic to ω.
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2. BOUNDING THE NUMBER OF
SESSIONS: DEDUCIBILITY CONSTRAINTS
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SUMMARY 2

The formal model for a bounded number of sessions (consistent with many
previous works by J. Millen, V. Shmatikov, Y. Chevalier, R. Küsters, M.
Rusinowitch, M. Turuani, M. Baudet, S. Delaune etc...

Solving deducibility constraints in the DY case

General deducibility constraints: splitting the problem in 4 parts: 4 important
properties of the rewrite system

Narrowing and the finite variant property

Conservativity and the small attack theorem

Rewriting techniques applied to security protocols – p.28/52
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BOUNDED NUMBER OF SESSIONS

Consider a fixed number of instances of each role.
E.g. A(a, c) ‖B(b)

Nonces are distinct constants

Guess an interleaving of the rules
E.g. 1 of A; 1 of B; 2 of A; 2 of B.

The question is: for this sequence of actions, is there any attack ?

Difficulty: there is no a priori bound on the size of the attack.
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DEDUCIBILITY CONSTRAINTS

For instance: [CL & Shmatikov 2003], [Millen & Shmatikov 2001,2004], [Baudet
2005,2006], [Chevalier & Rusinowitch 2005, 2006], [Delaune et al 2006], [Bursuc
et al. 2007].
T0 is the initial intruder knowledge. For each (guessed) interleaving of actions
x1 → t1 if u1 = v1, . . . , xn → tn if un = vn:

T0  x1 u1 = v1

T0, t1  x2 u2 = v2

...

T0, t1, . . . , tn−1  xn un = vn

A valid trace instance is a substitution σ such that there are public contexts
(recipes) ζ1, . . . , ζn such that

∀i. ζi[T0, t1σ, . . . , ti−1σ] =E xiσ and uiσ =E viσ

Rewriting techniques applied to security protocols – p.30/52
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SOLUTION OF A DEDUCIBILITY CONSTRAINT

A solution of the deducility constraint T  u actually consists in two parts,
generalizing unification problems:
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EXAMPLES (1)

A(a, b) : νNA 1. → {a, NA}pub(b)

2. {NA, y}pub(a) → {y}pub(b)

B(a, b) : νNB 1. {a, x}pub(b) → {x, NB}pub(a)

2. {NB}pub(b) →

Consider A(a, c) ‖ B(b) with the interleaving A1; B1; A2; B2.

T0 = {pub(a), pub(b), pub(c), priv(c), a}.

T1 = T0, {a, na}pub(c)  x1 x1 = {a, x}pub(b)

T2 = T1, {π2(dec(x1, priv(b))), nb}pub(a)  x2 x2 = {na, y}pub(a)

T3 = T2, {π2(dec(x2, priv(a)))}pub(c)  x3 x3 = {nb}pub(b)

π1(x, y) = x π2(x, y) = y dec({x}pub(y), priv(y)) = x

x = na, y = nb yields a solution.
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.

EXAMPLES (2)

1. A → S : B, {Ka}pub(S)

2. S → B : A

3. B → S : A, {Kb}pub(S)

4. S → A : B, Kb ⊕ Ka

A(a, b, s) : νKa → b, {Ka}pub(s)

b, x →

B(a, b, s) : νKb a → a, {Kb}pub(s)

S(a, b, s) : b, {y1}pub(s) → a

a, {y2}pub(s) → b, y1 ⊕ y2

x⊕(y⊕z) = (x⊕y)⊕z x⊕y = y⊕x x⊕0 = x x⊕x = 0 {x⋆{y}pub(z)}pub(z) = {x⋆y}pub(z)

B(a, b, s)‖S(c, d, s) (c is corrupted).

T0, a  x1 x1 = a

T1, {Kb}pub(s)  x2 x2 = d, {x}pub(s)

T2, c  x3 x3 = c, {y}pub(s)

T3, d, x ⊕ y  x4 x4 = Kb
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EXAMPLES (3)

EP (x, y, b, X) : νn1. → h(bn1 , y, N(x, y), X)

z → n1 − s(x) × z, X

S(x, y, b) : νn2, n3. z1 → n2

z2 → if h((bs(x))n2 × bπ1(z2), y, N(x, y), π2(z2)) = z1 then n3

T0 = {b0, b
s(A)
0 , A, S, h(b

n1
0 , S, N(A, S), X1)}

T0  z1

T0, n2  z

T0, n2, n1 − s(A) × z, X1  z2

h((bs(A))n2 × b
π1(z2)
0 , S, N(A, S), π2(z2)) = z1

z2 6= n1 − s(A) × z, X1
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SECURITY PROPERTIES

The security property is expressed using the solutions of the constraint
system(s): for any solution σ

Secrecy T0, t1σ, . . . , tnσ 6 secret

Authentication (agreement) C1[u1, . . . , um]σ =E C2[v1, . . . , vk]σ

Trace equivalence

C1[t1, . . . , tn]σ =E C2[t1, . . . , tn]σ ⇔ C1[u1, . . . , un]σ =E C2[u1, . . . , un]σ

In this case solutions include the recipes, which should be the same in both constraint systems
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ADDITIONAL PROPERTIES OF THE CONSTRAINTS

Constraints:

A deduction part, T0  x1, . . . , Tn−1  xn

(A restricted second-order unification problem).

An equational part: a conjunction of equations

A part expressing the negation of a security property: a deduction
constraint (secrecy) a conjunction of equalities/disequalities
(authentication), membership constraints...

Monotonicity The attacker’s knowledge is increasing: T0 ⊆ T1 ⊆ . . . ⊆ Tn

Origination If x ∈ V ar(Ti), then there is j < i such that x = xj .

Example

T0  x1 x1 = h(x)

T0, x  x2

is not a constraint
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SOLVING DEDUCIBILITY CONSTRAINTS IN THE DY
CASE (1)

Observe that, for any term in normal form s and any normalized substitution σ,
St(sσ ↓) ⊆ St(s)σ ↓ ∪St(σ).

Example s =< dec(x, k), x > and σ = {x 7→ [< a, na >]k.
sσ ↓=<< a, na >, [< a, na >]k > ...

Exercise: complete the proof. Which property of the rewrite system are we using
here ?

let E be a unification problem E is equivalent (modulo DY) to a finite disjunction
W

i Ei where each Ei is a conjunction of equations xi,j = ui,j such that
• ∀i, j, l, xi,j /∈ V ar(ui,l),
• ∀i, j, ui,j ∈ St(E). (or pub(St(E)) in case of asymetric encryption)

Exercise: Complete the proof. Which properties of the rewrite system are we using
here ?
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SOLVING DEDUCIBILITY CONSTRAINTS IN THE DY
CASE (2): THE SMALL ATTACK PROPERTY

The small attack property: Let σ be a solution of C. Then the substitution θ obtained by
replacing any v ∈ St(σ) \ St(C)σ ↓ by an arbitrary public subterm is also a solution of C.

Proof idea: First, using the previous observation, we can consider w.l.o.g. pure deducibility
constraints (without equations).
Let x be a rhs such that v ∈ St(xσ) and Tx  x ∈ C, Tx minimal. Let ζ0[Txσ] ↓= xσ.

By locality,

either xσ ∈ St(Txσ): then v ∈ St(Tx)σ by minimality

Or ζ0[Tx] = f(ζ1[Tx], . . . , ζn[Tx]) and xσ = f(ζ1[Txσ] ↓, . . . , ζn[Txσ] ↓)

If v /∈ St(C)σ, let xθ = xσ[v 7→ v′].

If ζ[Tσ] ↓= yσ then

Replace any ζ′ = ζ|p such that ζ′[T ] ↓ is xσ or one of its direct subterms, with the
corresponding ζi

The resulting recipe ζ is such that ζ[Tθ] ↓= yθ
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SOLVING DEDUCIBILITY CONSTRAINTS IN THE DY
CASE (3)

Non deterministic algorithm:

For each s ∈ StC, guess if its instance is deducible and at which step: insert
Ti  xs ∧ xs = s, adding xs to all Tj , j > i.

By locality and the small attack property, C has a solution iff there is one of the
above systems which has a one-step solution θ: recipes consist only in a single
function symbol

Turn non-deterministically each deduction constraint into an equation.

Solve the equation system

Theorem [Rusinowitch, Turuani, 2001]: In the DY case, deducibility constraints are
NP-complete.
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EXAMPLE

(

a  x

a, [k]<a,x>  y y = k

Insert a guessed deducible subterm:

8

>

>

<

>

>

:

a  x

a  z z = < a, x >

a, [k]<a,x>, z  y y = k

Turn the constraints into equations:

8

>

>

<

>

>

:

a = x (ζ1 = x1)

< a, a > = z z = < a, x > (ζ2 =< x1, x1 >)

dec([k]<a,x>, z) = y y = k (ζ2 = dec(x2, x3))
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SOLVING DEDUCIBILITY CONSTRAINTS: THE DY
CASE (4)

R1 C ∧ T  u  C if T ∪ {x | (T ′
 x) ∈ C, T ′ ( T}⊢u

R2 C ∧ T  u  σ Cσ ∧ Tσ  uσ if σ = mgu(t, u), t ∈ St(T ),

t 6= u, t, u not variables

R3 C ∧ T  u  σ Cσ ∧ Tσ  uσ if σ = mgu(t1, t2), t1, t2 ∈ St(T ),

t1 6= t2, t1, t2 not variables

R′

3
C ∧ T  u  σ Cσ ∧ Tσ  uσ if σ = mgu(t2, t3), {t1}t2 , priv(t3) ∈ St(T ),

t2 6= t3, t2 or t3 (or both) is a variable

R4 C ∧ T  u  ⊥ if var(T, u) = ∅ and T 6⊢ u

Rf C ∧ T  f(u, v)  C ∧ T  u ∧ T  v for f ∈ { 〈 〉, [], {}}

Theorem [CL, Cortier, Zalinescu, 2007] This system is correct, complete and terminating
in polynomial time.
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3. SOLVING DEDUCIBILITY CONSTRAINTS
IN EQUATIONAL THEORIES
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FOUR KEY PROPERTIES OF THE REWRITE SYSTEM

Assume E is described by a finite AC-convergent rewrite system.

Finite variant property

Locality (small proofs)

Conservativity (small attacks)

One-Step deducibility constraints

Rewriting techniques applied to security protocols – p.43/52
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THE FINITE VARIANT PROPERY

Convergent Rewriting Systems (possibly modulo AC). Every term u has a normal form u ↓.

Finite variant property: [CL, Delaune 2005],
For every term t, there is a finite (computable) set of substitutions θ1, . . . , θn such that

∀σ. ∃i,∃τ.; tσ ↓=AC (tθi ↓)τ

Examples
Abelian Groups

x + 0 → x x + (−x) → 0 −(x) + (−y) + z → (−(x + y)) + z

−(−(x)) → x (−x) + x + y → y (−(x + y)) + x → −y

−0 → 0 (−x) + (−y) → −(x + y) (−(x + y)) + (x + z) → (−y) + z

−((−x) + y) → x + (−y)

Exercise

Show that orienting the red rules in the other direction, while we still get a convergent rewrite system,

we do not get the finite variant property.
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THE FINITE VARIANT PROPERTY (2)

A sufficient criterion
If, for every function symbol f there is cf ∈ N s.t. for any terms t1, . . . , tn in normal form,
f(t1, . . . , tn) can be normalized in at most cf steps, then the rewrite system has the FVP

Which theories satisfy finite variant property ?
Most relevant examples (enc-dec,xor, modular exponentiation, EP,...)
Proofs of FVP [Escobar,Meseguer,Sasse 2008]

Unification
Note that the FVP implies that unification is decidable and finitary.

Example
What are the variants of x + y + a in the case of Abelian groups ?
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CONSERVATIVITY

There is a (effective) function F from finite sets of terms to finite sets of terms
such that for every constraint C and every solution θ, there is a solution σ such
that

St(Cσ ↓) ⊆ F (St(C)σ ↓)

σ is built out of pieces of C.

Examples

DY theory, xor-theory: F is the identity.
Intuition: if xσ is constructed from its direct subterms, then every time we
look “inside” xσ, we could use its (constuctible) subterms instead.
Therefore, xσ could be replaced by any other value.
Now, if xσ is not constructed from its direct subterms, it must be obtained by
rewriting a context applied to pieces of the constraint. Hence being itself a
subterm of the constraint, since the rewrite rules only yield subterms of the
left sides.

EP: F may add or remove one (and only one) top exponential
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EXAMPLE

θ = {x 7→ a + b; y 7→ ca+b+c; z 7→ ba} is a solution of

c, a + b  x

c, a + b, x + a  y

c, a + b, x + a, ya
 z z = ba
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EXAMPLE

θ = {x 7→ a + b; y 7→ ca+b+c; z 7→ ba} is a solution of

c, a + b  x

c, a + b, x + a  y

c, a + b, x + a, ya
 z z = ba

θ is a solution: (2(a + b)− (x + a))x+a−(a+b) = z
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EXAMPLE

θ = {x 7→ a + b; y 7→ ca+b+c; z 7→ ba} is a solution of

c, a + b  x

c, a + b, x + a  y

c, a + b, x + a, ya
 z z = ba

θ is a solution: (2(a + b)− (x + a))x+a−(a+b) = z

it is not a conservative one

σ = {x 7→ a + b; y 7→ c; z 7→ ba} is a conservative one
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ONE-STEP DEDUCIBILITY CONSTRAINTS

Only recipes whose subterms are variables are considered.
Example there is no one-step solution to a, b  x ∧ x = (a + b) ⋆ a

One-step deducibility constraints can be non-deterministically turned into
equations (guess the top symbol and the arguments).
In case of AC-symbols, this requires in addition to introduce integer variables
counting the number of times each term is used. This yields possible additional
difficulties (avoid non-linear Diophantine systems !!)

Instances

One step deducibility constraints are straightforward for DY.

One step deducibility constraints are decidable in polynomial time for
Abelian Groups, xor: they reduce to linear equations systems.

Decidable for EP in NP. (More complex decision procedure)

Open question for AC
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EXAMPLE

a + b  x

a + b, x + a, 2x + c  y y = 2z + c

. . .

8

>

<

>

:

x = λ.(a + b)

y = λ1(a + b) + λ2(x + 3a) + λ3(2x + c)

2z + c = y

=⇒

8

>

<

>

:

x = λ.(a + b)

y = λ′
1(a + b) + 3λ′

2a + λ′
3c

y = 2z + c

=⇒

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

x = λx,aa + λx,bb + λx,cc

y = λy,aa + λy,bb + λy,cc

z = λz,aa + λz,bb + λz,cc

λ = λx,a

λ = λx,b

λx,c = 0

λy,a = λ′
1 + 3λ′

2

λy,b = λ′
1

λy,c = λ′
3

2λz,a = λy,a

2λz,b = λy,b

λz,c = 2λy,c
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A TEMPLATE FOR DECISION PROCEDURES

Theorem: Conservativity, locality, and the finite variant property allow,
altogether, to reduce deduction constraints to one-step deduction constraint.

Conservativity : St(Cσ ↓) ⊆ F1(St(C)σ ↓)

Finite variant property: St(C)→ St(C)θ1 ↓, . . . , St(C)θn ↓

F1(St(C)σ ↓) ⊆ F1(St(C)θi ↓ σ1) ⊆ F2(St(C)θi ↓)σ2

Guess deducible terms in F2(St(C)θi ↓), and in which order. Insert the
appropriate constraints.

Locality each step requires only a pure recipe.

Corollary : decidability in NP for DY, xor, exponentiation.
Also: the EP case, disjoint and hierarchical combinations (**)

(**) For combinations: only conservativity has been proved to be combinable in general
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IF THERE IS STILL SOME TIME LEFT...

The combination problems:

Protocols may rely on several primitives yielding combined equational
theories (not necessarily disjoint)

Use a semantic subterm notion (subterm= alien subterm) Then follow the
same procedure, yielding pure systems instead of one-step systems.

Yields decision procedures for well-moded systems [Chevalier, Rusinowitch
2006]
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OPEN QUESTIONS

General criteria for locality in presence of AC symbols

Combination results for locality, conservativity, finite variant property when
there are AC symbols

Procedures preserving the set of solutions (as in the DY case); allowing the
decision of wider classes of security properties

A good proof-theoretic explanation of the small attack property
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