
Advanced Topics in Termination

3rd International School on Rewriting

Obergurgl, Austria, 21-23 July 2008

Dieter Hofbauer

BA Nordhessen

Germany

ISR 2008 – Obergurgl, Austria – p.1/111



Rewriting

Why study rewriting? Well . . .

• oriented equations

• universal computation model

• model for non-deterministic processes

Specific classes of rewriting systems:
string / term / higher-order / graph / . . .
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String Rewriting

Why study string rewriting?

•• oriented equations  (semi-) group theory

• universal computation model
 recursion / complexity theory

• particular case of linear term rewriting (why?)

• prototype for more general rewriting systems:

• concepts easier to invent
• concepts easier to explain
• concepts often generalize (to linear rewriting . . . )
• undecidability results transfer
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String Rewriting: Definitions

• Letter: element of a set Σ, the alphabet

• String: sequence of letters. Σ∗ is the set of strings over Σ

• String rewriting system: set of rules of the form ℓ → r,
i.e. a set R ⊆ Σ∗ × Σ∗

• Rewrite step: replace the left hand side of rule ℓ → r by
its right hand side: xℓy →R xry within context x, y ∈ Σ∗

• Derivation: chain of rewrite steps
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Term Rewriting: Definitions

• Symbol: element of a set Σ, the signature

• Term: tree.
TΣ is the set of ground terms over Σ,
TΣ(V) is the set of terms with variables from V

• Term rewriting system: set of rules of the form ℓ → r,
i.e. a set R ⊆ TΣ(V) × TΣ(V)

• Rewrite step: replace the left hand side of rule ℓ → r by
its right hand side:
c[ℓσ] →R c[rσ] within context c under substitution σ

• Derivation: chain of rewrite steps
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Termination
Why study termination? Well . . .

System R is terminating
if any R-derivation contains only finitely many steps.

• Notation SN(R): R is strongly normalizing

• That is, →+
R is well-founded.

Expl.s of terminating (why?) systems:

• {aab → ba}

• {ab → ba}

• {ab → baa}

• {aa → aba}
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Example
R = {aa → bc, bb → ac, cc → ab} induces derivation

b b a a →R

b b b c →R

b a c c →R

b a a b →R

b b c b →R

a c c b →R

a a b b →R · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

• Is there an infinite derivation?
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Example
R = {aa → bc, bb → ac, cc → ab} induces derivation

b b a a →R

b b b c →R

b a c c →R

b a a b →R

b b c b →R

a c c b →R

a a b b →R · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

• Is there an infinite derivation?
No (was open for some time)

• How long can derivations get?
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Example
R = {aa → bc, bb → ac, cc → ab} induces derivation

b b a a →R

b b b c →R

b a c c →R

b a a b →R

b b c b →R

a c c b →R

a a b b →R · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

• Is there an infinite derivation?
No (was open for some time)

• How long can derivations get?
Exponential bound in size of starting string (trivial)
Open problem: polynomial upper bound?
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Derivational Complexity: Definition
The derivation height of term t modulo system R is
the maximal length of an R-derivation starting in t:

dhR(t) = max{n | ∃s : t →n
R s}

The derivational complexity of R maps natural number n
to the maximal derivation height of terms of size at most n:

dcR(n) = max{dhR(t) | size(t) ≤ n}

This is a worst case complexity measure.

Exercise: How about the following systems?

• {aab → ba}, {ab → ba}, {ab → baa}, {aa → aba}
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Derivational Complexity: Exercises

Find lower bounds for the derivational complexity of

• R1 = {ba → acb, bc → abb}

• R2 = {ba → acb, bc → cbb}

• R3 = {ba → aab, bc → cbb}

Hint: one system is doubly exponential, one is multiply
exponential, one is non-terminating.

A lower bound is proven by presenting a family of derivations
that achieves the desired length.
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Relative Termination
allows to remove rules successively  
modular termination proofs

System R is terminating relative to system S
if any R ∪ S-derivation contains only finitely many R-steps.

• Notation: SN(R/S)

• That is, (→∗
S ◦ →R ◦ →∗

S)+ is well-founded

Expl: {aa → aba} is terminating relative to {b → bb}.

SN(R/S) and SN(S) imply SN(R ∪ S)
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Course Outline

• Termination proofs
• direct / incremental / transformations

• Match bounds
• automata / regularity preservation

• Matrix interpretations
• heuristics / weighted automata

• Derivational complexity
• interpretations / context-dependent int’s
• path orders
• relative termination

• Miscellaneous
• competition
• live demos
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www.termination-portal.org
• people

• workshop on termination (1st WST’93 – 9th WST’07)

• termination competition (’04 – ’07)

• tools, e.g.
• AProVE [Giesl et al.]

• Jambox [Endrullis]

• Matchbox [Waldmann]

• MultumNonMulta [Hofbauer]

• Torpa [Zantema]

• TTT(2) [Middeldorp et al.]

• problems
termination problem data base (tpdb) at
www.lri.fr/~marche/termination-competition/
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Termination via Interpretations
Interpretations as order preserving mappings
into well-founded domains:

• Let R be a rewriting system over Σ.

• Let (D,≥D) be a well-founded partial order.

If a mapping τ : TΣ → D is order preserving (monotone)

• from (TΣ,→R
+) to (D,>D)

then R is terminating.

•
R

τ

•
R

•
R

•
R

•
R

•

•
>D

•
>D

•
>D

•
>D

•
>D

•

ISR 2008 – Obergurgl, Austria – p.13/111



Relative Termination
Straightforward generalization to relative termination:

• Let R and S be rewriting systems over Σ.

• Let (D,≥D) be a well-founded partial order.

If a mapping τ : TΣ → D is order preserving

• from (TΣ,→R
+) to (D,>D) and

• from (TΣ,→S
+) to (D,≥D),

then R is terminating relative to S.

• ∗

S
τ

•
R

• ∗

S
•

R
• ∗

S
•

•
≥D

•
>D

•
≥D

•
>D

•
≥D

•
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Interpretations (cont’d)
R is terminating iff there is a well-founded ordering > on TΣ

such that, for all t, t′ ∈ TΣ,

t →R t′ implies t > t′

(Exercise: show“only if”.)

• For interpretations choose > as an ordering
induced by a function τ : TΣ → D as above:

τ is an interpretation for R into (D,≥D) if, for all t, t′ ∈ TΣ,

t →R t′ implies τ(t) >D τ(t′)

• Are interpretations a“universal”proof method, i.e.,
do they apply to all terminating rewriting systems?

• In which cases can D be specialized to N?
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Interpretations (cont’d)
• Are interpretations a“universal”proof method, i.e.,

do they apply to all terminating rewriting systems?

Yes: Let D = TΣ, >D = →+
R, τ the identity on TΣ.

R is terminating if and only if an interpretation for R
into some well-founded partial ordering exists.

• In which cases can D be specialized to N?

For finitely branching terminating systems: Let τ = dhR.
(Note that dhR is well-defined for finitely branching R.)
R is terminating if and only if an interpretation for R
into (N,≥) exists.

Exercise: show that no interpretation for
{a → f i(b) | i ∈ N} ∪ {f(b) → b} into (N,≥) exists.
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Homomorphic Interpretations
Each function symbol f is associated with a function fτ of
same arity on the underlying well-founded set (Σ-algebra).
Ground terms are interpreted via homomorphic extension:

τ
(

f(t1, . . . , tn)
)

= fτ

(

τ(t1), . . . , τ(tn)
)

• Expl.: A homomorphic interpretation for {ffx → fgfx}
over Σ = {a, f, g} into (N,≥): Choose aτ = 1 and

fτ =

{

n + 2 if n is even

n − 1 else
gτ =

{

n + 1 if n is even

n else

Hint: show τ(t) = 2k if t = f(. . . ), else τ(t) = 2k + 1,
where k is the number of factors ff in t.
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Homomorphic Int’s (cont’d)

• Again, homomorphic interpretations are“universal”.
Let D = TΣ, >D = →+

R as before.
Choose fτ = f , thus τ(t) = t.

• A simple algebraic characterization:
τ : TΣ → D is a Σ-homomorphism iff
τ(ti) = τ(t′i) implies τ

(

f(t1, . . . , tn)
)

= τ
(

f(t′1, . . . , t
′
n)
)

.

• E.g., all injective interpretations can be expressed as
homomorphic ones.

• But derivation height functions dhR of terminating
systems R typically not (why?). Nevertheless:
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Homomorphic Int’s (cont’d)

• A finitely branching system R is terminating if and only
if a homomorphic interpretation for R into (N,≥) exists.

• Proof: exercise

• Hint: define an appropriate bijection
between TΣ and N that respects →R.

• Remark: this even gives recursive functions fτ

in case sets →R(t) can be computed,
thus in particular for finite systems R.
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Monotone Interpretations

Using strictly monotone functions fτ ensures that it suffices
to consider (ground) instances ℓγ → rγ of rewrite rules ℓ → r
within homomorphic interpretations into (D,≥D):

d >D d′ implies fτ (. . . , d, . . . ) >D fτ (. . . , d
′, . . . )

Such an interpretation is called monotone. Then:

• t →R t′ implies τ(t) >D τ(t′) if and only if, for all rules
ℓ → r and ground substitutions γ, τ(ℓγ) >D τ(rγ).

• Thus, R is terminating if τ(ℓγ) >D τ(rγ)

for all rules ℓ → r and ground substitutions γ.
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Monotone Interpretations (cont’d)

• Again, monotone interpretations are“universal”.

• But unlike homomorphic interpretations in general, for
monotone interpretations the restriction to (N,≥) is no
longer universal: An interpretation into a totally ordered
domain induces a total ordering on ground terms. But for

{g(a) → g(b), f(b) → f(a)}

this is impossible (why?).
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Challenging Problems

• z086 [Zantema]

{aa → bc, bb → ac, cc → ab}

• z001 [Zantema]

{aabb → bbbaaa}

Automata theory can help . . .
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Preserving Regularity
Given: A string rewriting system R over alphabet Σ.
The set of descendants of a language L ⊆ Σ∗ modulo R is

→∗
R(L) = {y ∈ Σ∗ | ∃x ∈ L : x →∗

R y} = R∗(L)

R preserves regularity : If L is regular then →∗
R(L) is regular.

R preserves context-freeness: analogously

• Aiming at syntactic criteria guaranteeing regularity
preservation – despite known undecidability results.

Example [Book, Jantzen, Wrathall 1982]:
Inverse context-free rules: |right hand side| ≤ 1.
Monadic rules: Inverse context-free and length-reducing.
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Deleting String Rewriting Systems
The system R is deleting if there is a precedence (irreflexive
partial order) > on Σ so that for each rule ℓ → r in R:

∀ letter b in r ∃ letter a in ℓ : a > b

Hibbard (1974) calls the inverse system
R− = {r → ℓ | ℓ → r in R} context-limited.

• Deleting systems preserve regularity.
[H, Waldmann 2003]

• Inverse deleting systems preserve context-freeness.
[Hibbard 1974]
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Example

R = {ba → cb, bd → d, cd → de, d → ǫ}

is deleting for the precedence

a > b > d, a > c > e, c > d

For instance,

→∗
R(ba∗d) ∩ NF(R) = c∗b ∪ c∗e∗

where NF(R) denotes the set of R-normal forms.
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A Decomposition Theorem
For each deleting system R over Σ there are

• a finite substitution s from Σ to some alphabet Γ ⊇ Σ,

• an inverse context-free (≈ monadic) system M over Γ

so that

→∗
R = (s ◦→∗

M )|Σ

ISR 2008 – Obergurgl, Austria – p.26/111



A Decomposition Theorem
For each deleting system R over Σ there are

• a finite substitution s from Σ to some alphabet Γ ⊇ Σ,

• an inverse context-free (≈ monadic) system M over Γ

so that

→∗
R = (s ◦→∗

M )|Σ

Proof sketch: Replace ℓ1aℓ2 → r1yr2 (where a is >-maximal)
with {a → a1ya2, ℓ1a1 → r1, a2ℓ2 → r2} (a1, a2 new letters).

•

r1

ℓ1 • a

a1

•
ℓ2 •

• y •

r2a2
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Example cont’d

R = {ba → cb, bd → d, cd → de, d → ǫ}

i pivot rule Si Mi Ni

0 ∅ bd → d, d → ǫ ba → cb, cd → de

1 ba → cb a → a1a2

bd → d, d → ǫ,

ba1 → c, a2 → b
cd → de

2 cd → de c → c1c2

bd → d, d → ǫ, ba1 → c,

a2 → b, c1 → d, c2d → e
ba1 → c1c2

3 ba1 → c1c2 a1 → a1,1a1,2

bd → d, d → ǫ, ba1 → c,

a2 → b, c1 → d, c2d → e,

ba1,1 → c1, a1,2 → c2

∅
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R = {ba → cb, bd → d, cd → de, d → ǫ}
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Example cont’d

R = {ba → cb, bd → d, cd → de, d → ǫ}

i pivot rule Si Mi Ni

0 ∅ bd → d, d → ǫ ba → cb, cd → de

1 ba → cb a → a1a2

bd → d, d → ǫ,

ba1 → c, a2 → b
cd → de

2 cd → de c → c1c2

bd → d, d → ǫ, ba1 → c,

a2 → b, c1 → d, c2d → e
ba1 → c1c2

3 ba1 → c1c2 a1 → a1,1a1,2

bd → d, d → ǫ, ba1 → c,

a2 → b, c1 → d, c2d → e,

ba1,1 → c1, a1,2 → c2

∅

Why does the transformation terminate?
Here, (baseNi)i is {a, c} <mset {c} <mset {a} <mset ∅.
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Corollaries
Deleting systems preserve REG.

Proof:

R∗(L) = (s ◦ M∗)|Σ(L) = M∗(s(L)) ∩ Σ∗.

And REG is closed under finite substitution,
inverse context-free rewriting, and intersection with Σ∗.

Inverse deleting systems preserve CF.

Proof:

R−∗(L) = (R∗)−(L) = ((s ◦ M∗)|Σ)−(L) = s−(M−∗(L)).

And CF is closed under context-free rewriting
and inverse finite substitution.
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Application 1: Prefix Rewriting

For a given prefix rewriting system P define
a (standard) rewriting system

P▽ = {▽ℓ → r | ℓ → r in P}

over Σ ∪ {▽}. Note that P▽ is deleting (choose ▽ > a ∈ Σ).

Then

▽
∗ · P ∗(L) = P▽

∗(▽∗ · L)

for L ⊆ Σ∗, thus P ∗(L) = π▽(P▽
∗(▽∗ · L)),

and regularity of L implies regularity of P ∗(L) [Büchi 1964].
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Application 2: Monadic Rewriting

For a given monadic rewriting system M define
a rewriting system

M△ = {h△(x) → ǫ | x → ǫ in M}∪

{h△(x) a → b | xa → b in M, a, b ∈ Σ}

over Σ ∪ {△}, where h△ : a 7→ a△ for a ∈ Σ.
Again, M△ is deleting. Then

M∗(L) = π△(M△
∗(h△(L)))

for L ⊆ Σ∗, and regularity of L implies regularity of M∗(L)
[Book, Jantzen, Wrathall 1982].
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Further Applications

• Mixed prefix-, suffix-, and monadic rewriting
(choose ▽ > △ > a ∈ Σ)

• Transductions

• . . .

• Match-bounded rewriting
[Geser, H, Waldmann 2003]
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Match-Heights and -Bounds
Annotate letters by natural numbers (heights).
Let height in reduct = 1 + minimum height in redex:
For R over Σ define (infinite) system match(R) over Σ × N:

{ℓ′ → lift1+m(r) |

(ℓ → r) ∈ R, base(ℓ′) = ℓ, m = min height(ℓ′)}

with morphisms

• height : Σ × N → N : (a, h) 7→ h

• base : Σ × N → Σ : (a, h) 7→ a

• lifth : Σ → Σ × N : a 7→ (a, h)

Example: match({ab → bc}) = {a0b0 → b1c1, a0b1 → b1c1,
a1b0 → b1c1, a1b1 → b2c2, a0b2 → b1c1, . . .}
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Match–Bounded Systems

System R is match-bounded for L ⊆ Σ∗ by c ∈ N if all
heights in match(R)-derivations starting from lift0(L) are ≤ c.

matchc(R) = match(R)|Σ×{0,...,c}

• Observation: matchc(R) is deleting.
Proof: Use precedence (x,m) > (y, n) iff m < n.

• Example: Rule a0b2 → b1c1 is deleting,
since a0 > b1 and a0 > c1, since 0 < 1.
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Properties of Match-Bounded Systems

Basic observation: If R is match-bounded by c then

R∗ = lift0 ◦matchc(R)∗ ◦ base

• If R is match-bounded (for L),
then R is linearly terminating (on L).

• If R is match-bounded, then
R preserves REG, and R− preserves CF.

• “Is R match-bounded by c for L ∈ REG ?” is decidable.
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Match-Bounded Systems: Examples
• Z = {a2b2 → b3a3} is match-bounded by 4.

Thus, the system has linear derivational complexity
[Tahhan-Bittar].

• Peg solitaire is a one-person game: remove pegs from a
board by one peg X hopping over an adjacent peg Y .
After the hop, Y is removed. Peg solitaire on a
one-dimensional board corresponds to

P = {���→ ���, ���→ ���}

The language of all positions that can be reduced to one
single peg: P−∗(�∗

��
∗)

Regularity of P−∗(�∗
��

∗) is a“folklore theorem”.
P− is match-bounded by 2, so we obtain yet another
proof of that result.
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Related Work: Change-Bounds

For R over Σ define (infinite) system change(R) over Σ × N:

{ℓ′ → r′ | (ℓ → r) ∈ R, base(ℓ′) = ℓ, base(r′) = r,

height(successor ℓ′) = height(r′)}

for length-preserving R, where successor(x, c) = (x, c + 1).

Example: change({ab → bc}) = {a0b0 → b1c1, a0b1 → b1c2,
a1b0 → b2c1, a1b1 → b2c2, a0b2 → b1c3, . . . }.

[Ravikumar 1997]: R change-bounded ⇒ R preserves REG.

New proof since R change-bounded ⇒ R match-bounded.

Actually, ⇔ holds.
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Inverse Deleting Systems

Inf(R∗) = {x | ∃∞y : x →∗
R y}

Theorem [Geser, H, Waldmann 2003]
R inverse deleting ⇒ Inf(R∗) regular (effectively).

Corollary

• R inverse deleting ⇒ termination of R decidable.

• R inverse match-bounded ⇒ termination of R decidable.

Proof: Check Inf(R∗) = ∅. (Note that cycles are impossible.)

Example: Z− is match-bounded by 2, and Inf(Z∗) = ∅.
Thus Z is terminating.
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Inverse Deleting Systems (cont’d)

Corollary

• R inverse deleting and L regular ⇒
termination of R on L decidable.

• R inverse match-bounded and L regular ⇒
termination of R on L decidable.

Proof: Check Inf(R∗) ∩ L = ∅.

Examples

• termination on one string: L = {x}

• termination on all strings: L = Σ∗
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Inverse Deleting Systems (cont’d)

The following reachability problem is decidable:

Given: An inverse match-bounded system R;
a context-free language L; a regular language M .

Question: ∃x ∈ L ∃y ∈ M : x →∗
R y ?

Proof: Check R∗(L) ∩ M 6= ∅.
Note: R∗(L) is effectively context-free.

Example: The following reachability problem is decidable:

Given: An inverse match-bounded system R over Σ;
two strings x, y ∈ Σ∗.

Question: ∃u, v ∈ Σ∗ : x →∗
R uyv ?

Proof: Choose L = {x} and M = Σ∗{y}Σ∗.

ISR 2008 – Obergurgl, Austria – p.39/111



No Match-Bounds

Exercise

• Show that

{ab → ba}

is not match-bounded.

• How many proofs can you find?
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Forward-Closures and Termination

Right forward closures modulo R:
RFC(R) is the least set F ⊆ Σ∗

that contains rhs(R) and is closed under

• rewriting:
u ∈ F ∧ u →R v ⇒ v ∈ F

• right extension:
uℓ1 ∈ F ∧ (ℓ1ℓ2 → r) ∈ R ∧ ℓ1, ℓ2 6= ǫ ⇒ ur ∈ F

Example: For R = {ba → aab}, RFC(R) = a2∗b.

Theorem [Dershowitz 1981]
R terminating on Σ∗ iff R terminating on RFC(R).
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Match-Bounds for Forward-Closures

R# = R ∪ {ℓ1# → r | (ℓ1ℓ2 → r) ∈ R, ℓ1, ℓ2 6= ǫ}

For L = rhs(R) · #∗ we get

RFC(R) = R#
∗(L) ∩ Σ∗

Theorem: R# match-bounded for L ⇒ R terminating on Σ∗.
Proof: R ⊆ R# and RFC(R) ⊆ R#

∗(L).

Remark: R linearly terminating on L,
but not necessarily linearly on Σ∗ (example {ab → ba}).
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Example: Z = {a2b2 → b3a3}
Z# = {a2b2, a2b#, a2#, a#} → b3a3.
Automaton for match(Z#)∗(lift0(rhs(Z) · #∗)):

b3
0

b2a2

b2 b2

a2
1

b3
1a1 a0

b1

a0

a0
b1

b3a
3
3

b2
3

a3 a2

b2

a2
2

b1

b1
#0b3

4a
3
4

a2
3

b3
3

a2
2

b2
2

b2
a1

b1

a1

b1 a1

Match-bound for RFC(Z) is 4 ⇒ Z terminating.
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Compatible Finite Automata
Automaton A is compatible with R over Σ and L ⊆ Σ∗ if

• L ⊆ L(A)

• p
ℓ
→A q implies p

r
→A q for states p, q and rules ℓ → r

Then →∗
R(L) ⊆ L(A):“overapproximation”

• A (possibly infinite) rewriting system R over a (possibly
infinite) alphabet is locally terminating if every
restriction of R to a finite subalphabet is terminating.

• If some finite automaton is compatible with R and L,
and R is locally terminating, then R is terminating on L.

• Thus, if some finite automaton is compatible with
match(R) and lift0(L), then R is terminating on L.
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Completion Strategies

While A is not compatible repeat: If p
ℓ
→A q and not p

r
→A q

then add suitable transitions and states such that p
r
→A q.

Implemented in Torpa, Matchbox, AProVE, TTT2.

TORPA heuristic

p

ℓ

a

q

p′ r′

r = ar′, a ∈ Γ, r′ ∈ Γ∗

p

ℓ

r

q

else

Matchbox heuristic

p

ℓ

r1

q

p′
r2

q′ r3

r = r1r2r3 ∈ Γ∗
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Compatibility: Example
Consider R = {aba → abbba}. Then
R# = {aba → abbba, a# → abbba, ab# → abbba}

match(R#) = {aibjak → ambmbmbmam | m = min{i, j, k} + 1} ∪

{ai#j → ambmbmbmam | m = min{i, j} + 1} ∪

{aibj#k → ambmbmbmam | m = min{i, j, k} + 1}

This automaton is compatible with match(R#)
and a0b0b0b0a0#

∗
0, thus certifies match-bound 1:

1
a0

3
b0

4
b0

5
b0

6
a1

a0

7
b1

8

b1

2#0 10a1

a1

9
b1
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Fast versus Exact

• exact approach is complete, but maybe intractable

• approx. approach is incomplete, but often successful

ISR 2008 – Obergurgl, Austria – p.47/111



Fast versus Exact

• exact approach is complete, but maybe intractable

• approx. approach is incomplete, but often successful

• Good news
• [Endrullis 2005] fast and exact decomposition

•  extra slides

•  live demo
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Match-bounds for Term Rewriting
• Definition of match-heights and -bounds for TRSs is

obvious, but the exact approach needs REG-preservation
 a decomposition result for“deleting”TRSs.

• Bad news: M.b.ness does not imply REG-preservation:

{g(f(x, y)) → f(g(x), g(y))} on g∗(f(a, a))
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Match-bounds for Term Rewriting
• Definition of match-heights and -bounds for TRSs is

obvious, but the exact approach needs REG-preservation
 a decomposition result for“deleting”TRSs.

• Bad news: M.b.ness does not imply REG-preservation:

{g(f(x, y)) → f(g(x), g(y))} on g∗(f(a, a))

• Alternative: Use the approximation approach

to construct compatible tree automata

• (left-)linear [Geser, H, Waldmann, Zantema 2005]
using non-deterministic tree automata
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Match-bounds for Term Rewriting
• Definition of match-heights and -bounds for TRSs is

obvious, but the exact approach needs REG-preservation
 a decomposition result for“deleting”TRSs.

• Bad news: M.b.ness does not imply REG-preservation:

{g(f(x, y)) → f(g(x), g(y))} on g∗(f(a, a))

• Alternative: Use the approximation approach

to construct compatible tree automata

• (left-)linear [Geser, H, Waldmann, Zantema 2005]
using non-deterministic tree automata

• non-linear [Korp, Middeldorp 2007]
using“quasi-deterministic” tree automata

 live demo
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Matrix Interpretations
Expl.: z001 as a test case for automated termination methods

a 7→









1 1 0 0 0
0 0 1 0 0
0 1 0 0 0
0 2 0 0 0
0 0 0 0 1









b 7→









1 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 2 1 0 1
0 0 0 0 1









(ℓ → r) 7→







1 2 1 0 1
0 0 0 0 0
0 2 1 0 1
0 4 2 0 2
0 0 0 0 1






−







1 2 1 0 0
0 0 0 0 0
0 2 0 0 1
0 1 2 0 2
0 0 0 0 1






=









0 0 0 0 1
0 0 0 0 0
0 0 1 0 0
0 3 0 0 0
0 0 0 0 0









• This interpretation proves termination since

all entries are ≥ 0 and marked entries are ≥ 1

• Found automatically / underlying theory elementary /
fast verification
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Ring Interpretations

Interpret the free monoid of strings in a ring:

• concatenation of factors 7→ multiplication

• replacement of factors 7→ subtraction
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Ring Interpretations

Interpret the free monoid of strings in a ring:

• concatenation of factors 7→ multiplication

• replacement of factors 7→ subtraction

For termination: Use an (infinite) ordered ring,
which is well-founded (on its“positive cone”).

• Expl: (Z, 0, 1,+, ·) works for {aab → ba},
but doesn’t work for {ab → ba}
as multiplication is commutative.

 Use a non-commutative ring , e.g., a matrix ring
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Well-founded Rings
A partially ordered ring (D, 0, 1,+, ·,≥):

• (D, 0,+) an Abelian group, (D, 1, ·) a monoid.

• Multiplication distributes over addition from both sides.
(Multiplication not necessarily commutative / invertible.)

• ≥ is a compatible partial order:

a ≥ b ⇒ a + c ≥ b + c

a ≥ b ∧ c ≥ 0 ⇒ a · c ≥ b · c ∧ c · a ≥ c · b

Its positive cone: N = {d ∈ D | d ≥ 0},
its strictly positive cone: P = N \ {0} = {d ∈ D | d > 0}.
The ring is well-founded if > is well-founded on N .

• Note: The order is uniquely determined by these cones:
a ≥ b iff a − b ∈ N and a > b iff a − b ∈ P .

• Note: N · N ⊆ N , but P · P 6⊆ P if zero divisors exist.
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Ring Interpretations (cont’d)

A ring interpretation of alphabet Σ is a mapping i : Σ → D

• extended to a mapping i : Σ∗ → D on strings by

i(s1 · . . . · sn) = i(s1) · . . . · i(sn)

• extended to a mapping i : Σ∗ × Σ∗ → D on rules by

i(ℓ → r) = i(ℓ) − i(r)
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Ring Interpretations (cont’d)
Apply ring interpretations for proving termination:
Ensure i(xℓy) > i(xry) for each step xℓy →R xry, i.e.,

i(xℓy) − i(xry) = i(x)i(ℓ)i(y) − i(x)i(r)i(y)

= i(x)
(

i(ℓ) − i(r)
)

i(y) ∈ P (∗)

Given the set of interpretations of letters i(Σ) = A, what is
the set of admissible interpretations of rules i(R) = B?
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Ring Interpretations (cont’d)
Apply ring interpretations for proving termination:
Ensure i(xℓy) > i(xry) for each step xℓy →R xry, i.e.,

i(xℓy) − i(xry) = i(x)i(ℓ)i(y) − i(x)i(r)i(y)

= i(x)
(

i(ℓ) − i(r)
)

i(y) ∈ P (∗)

Given the set of interpretations of letters i(Σ) = A, what is
the set of admissible interpretations of rules i(R) = B?
From (∗) it is obvious that A∗BA∗ ⊆ P is necessary.
The largest such set B is

core(A) = {d ∈ D | A∗dA∗ ⊆ P}

Example: For A = {( 1 0
0 0 )} we get core(A) = {d | d ≥ ( 1 0

0 0 )}.
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Core Facts
• Increasing the range of interpretations of letters

typically reduces the set that can safely be chosen as
interpretations of rules:

If A1 ⊆ A2, then core(A1) ⊇ core(A2)

• The range of all interpretations is upward closed:
W.l.o.g. for the interpretation of letters by

core(A + N) = core(A)

and for the interpretation of rules by

core(A) + N = core(A)
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Ring Interpretations (cont’d)
Let R be a string rewriting system over Σ.
An interpretation i : Σ → N into a p.o.-ring is
order preserving

• from (Σ∗,→R) to (D,>) iff i(R) ⊆ core(i(Σ))

Definition: Let A be a subset of the positive cone of a well-
founded ring. Then i : Σ → A is an A-interpretation for R if

i(R) ⊆ core(A)

Theorem:

• If there is an A-interpretation for R,
then R is terminating.

ISR 2008 – Obergurgl, Austria – p.55/111



Ring Interpretations (cont’d)
Let R, S be string rewriting systems over Σ.
An interpretation i : Σ → N into a p.o.-ring is
order preserving

• from (Σ∗,→R) to (D,>) iff i(R) ⊆ core(i(Σ))

• from (Σ∗,→S) to (D,≥) iff i(S) ⊆ N

Definition: Let A be a subset of the positive cone of a well-
founded ring. Then i : Σ → A is an A-interpretation for R if

i(R) ⊆ core(A)

Theorem:

• If there is an A-interpretation i for R with i(S) ⊆ N ,
then R is terminating relative to S.
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Matrix Interpretations

Consider the p.o. ring of square matrices

of a fixed dimension n over the integers: D = Zn×n

• Addition / multiplication as usual.

• 0 and 1 are the zero and the identity matrix resp.

• The order is defined component-wise:
d ≥ e if ∀i, j : di,j ≥ ei,j.

• The positive cone is N = Nn×n, and P = N \ {0}.

• The p.o. is well-founded on the positive cone.

• For n > 1, the p.o. is not total.

In order to apply the previous theorem we need

a set of matrices A ⊆ N with non-empty core(A) .
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Matrix Classes
Two particular instances of the above method:

• Choose A = MI with core(A) = MI .

• Choose A = EI with core(A) = PI .

All these are simple“syntactically”defined subsets of N ,
parameterized by a set of matrix indices I ⊆ {1, . . . , n}:

MI = {d ∈ N | ∀i ∈ I∃j ∈ I : di,j > 0}

EI = MI ∩ MT
I

PI = {d ∈ N | ∃i ∈ I∃j ∈ I : di,j > 0}

Consider only entries di,j with i, j ∈ I:

• MI : no zero row

• EI : no zero row, no zero column
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Example: {aa → aba}/{b → bb}

i(a) =

(

1 1

1 0

)

i(b) =

(

1 0

0 0

)

is an E1-interpretation with
i(aa → aba) = i(aa) − i(aba) = ( 2 1

1 1 ) − ( 1 1
1 1 ) = ( 1 0

0 0 ) ∈ P1

and i(b → bb) = i(b) − i(bb) = 0 ∈ N .

Alternatively, use the M2-interpretation

i(a) =

(

1 1

1 0

)

i(b) =

(

0 1

0 1

)

with i(aa → aba) = ( 2 1
1 1 ) − ( 2 0

1 0 ) = ( 0 1
0 1 )∈ M2 and

i(b → bb) = 0. (This interpretation is not EI for any I.)
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Example: {aabb → bbbaaa}

a 7→









1 1 0 0 0
0 0 1 0 0
0 1 0 0 0
0 2 0 0 0
0 0 0 0 1









b 7→









1 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 2 1 0 1
0 0 0 0 1









(ℓ → r) 7→







1 2 1 0 1
0 0 0 0 0
0 2 1 0 1
0 4 2 0 2
0 0 0 0 1






−







1 2 1 0 0
0 0 0 0 0
0 2 0 0 1
0 1 2 0 2
0 0 0 0 1






=









0 0 0 0 1
0 0 0 0 0
0 0 1 0 0
0 3 0 0 0
0 0 0 0 0









This is an E{1,5}-interpretation.
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Example: Linear Interpretations

• All termination proofs by additive natural weights

can be expressed as matrix interpretations:
(N,+) is isomorphic to ({( 1 n

0 1 ) | n ∈ N}, · ) since

( 1 m
0 1 ) · ( 1 n

0 1 ) =
(

1 m+n
0 1

)

• More general: Linear interpretations

• Interpret letters by functions λn.an + b
on N with a, b ∈ N and a ≥ 1,

• concatenation is interpreted by function composition,
• proof obligation is ∀n : i(ℓ)(n) > i(r)(n).

This corresponds to matrix interpretations with matrices
of the form

(

a b
0 1

)

.
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A Normal Form for EI-Proofs

Matrix interpretations are invariant under permutations:

• If i is an EI- or MI-interpretation for R,

• and if π is a permutation on the index set {1, . . . , n},

• then there is also an Eπ(I)- / Mπ(I)-interpretation for R.
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A Normal Form for EI-Proofs

Matrix interpretations are invariant under permutations:

• If i is an EI- or MI-interpretation for R,

• and if π is a permutation on the index set {1, . . . , n},

• then there is also an Eπ(I)- / Mπ(I)-interpretation for R.

⇒ W.l.o.g. we can replace an arbitrary set I by {1, . . . , |I|}.
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A Normal Form for EI-Proofs

Matrix interpretations are invariant under permutations:

• If i is an EI- or MI-interpretation for R,

• and if π is a permutation on the index set {1, . . . , n},

• then there is also an Eπ(I)- / Mπ(I)-interpretation for R.

⇒ W.l.o.g. we can replace an arbitrary set I by {1, . . . , |I|}.

⇒ A normal form: Choose J = {1, n}.

• A proof of SN(R/S) via some EI-interpretation
can be replaced by a sequence of EJ -interpretations
which successively remove the same rules.
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Implementations: Performance

Percentage of YES in the 2006 SRS competition:

• MultumNonMulta (H) 51 %
matrix interpretations only

• Matchbox/Satelite (Waldmann) 68 %
labelling, matrices, RFC match-bounds

• TORPA (Zantema) 75 %
various techniques, including 3 × 3 matrices

• Jambox (Endrullis) 94 %
≈ Matchbox + dependency pairs

(2007 competition of partial significance . . . )
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Implementations: TORPA
Random guesses or complete enumeration, using matrix shape

(

0 ∗ +
0 ∗ ∗
0 0 0

)

⊆ core

(

1 ∗ ∗
0 ∗ ∗
0 0 1

)

with ∗ ∈ {0, 1, 4}. Occurs in 36% of its proofs, e.g. z007:

TORPA 1.6 is applied to
a b -> b a , b a -> a a c b ,
[A] Choose interpretation in NxN,
order : (x,y) > (x’,y’) <==> x > x’ & y >= y’
a : lambda (x,y) . (x+y,4y)
b : lambda (x,y) . (x,4y+1)
c : lambda (x,y) . (x,0)
remove: a b -> b a
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Implementations: MultumNonMulta
• Random guesses, random restart hill climbing; complete

enumeration, . . . (not in the competition version)

• Backward completion, see below  live demo
• Examples: z061 / z062 / . . .

• Example: Waldmann/r10

SN({ba2b → a4, ab2a → b4}/{b → b3})

Sparse 14 × 14 matrices (250 sec ’06 / 10 sec ’07)

• Determine additive weights using the
GNU Linear Programming Kit.

• Example: z112 / . . .
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Implementations: SAT Solving
• Fix dimension, say 5  Constraint system

• |Σ| · d2 unknowns (matrix entries) and

• |R| · d2 constraints (entries in differences).

• Fix maximal value for entries, say 7 = 23 − 1  

Finite domain constraint system

• Binary encoding of entries  boolean SAT problem:
e.g. 15.000 variables, 90.000 clauses, 300.000 literals

• Solve by SAT solver, e.g. SatELiteGTI.
Expl: z001 takes 7 seconds

• Jambox: Linear programming + SAT solving.

• Matchbox: Likewise, but using only one bit per entry:
Computation in {0, 1} ⊂ N, so 1 + 1 is “forbidden”.
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Limitation: Derivational complexity
In a product of k matrices from a finite set,
entries are bounded by an exponential function in k.
Assume R has derivational complexity above exponential.
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Limitation: Derivational complexity
In a product of k matrices from a finite set,
entries are bounded by an exponential function in k.
Assume R has derivational complexity above exponential.

⇒ There can be no strict matrix interpretation for R.
Expl: {ab → baa, cb → bbc}
• Derivational complexity doubly exponential.
• But:“Relative”matrix proof with step-wise removal

of rules is possible (first remove cb → bbc).
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Limitation: Derivational complexity
In a product of k matrices from a finite set,
entries are bounded by an exponential function in k.
Assume R has derivational complexity above exponential.

⇒ There can be no strict matrix interpretation for R.
Expl: {ab → baa, cb → bbc}
• Derivational complexity doubly exponential.
• But:“Relative”matrix proof with step-wise removal

of rules is possible (first remove cb → bbc).

⇒ There can be no matrix interpretation at all for R
if each rule occurs“equally often”.
Expl: {ab → bca, cb → bbc} (z018, z020)
• Derivational complexity tower of exponentials.
• But: Terminating via DP + matrix interpretations
• (and RPO-terminating).
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Limitation: Dimension restrictions
A matrix ring is not free: Certain polynomial identities hold.

• Dimension 1: [A,B] = 0
where [A,B] = AB − BA (commutator)

⇒ No 1-dim termination proof for {ab → ba}.
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Limitation: Dimension restrictions
A matrix ring is not free: Certain polynomial identities hold.

• Dimension 1: [A,B] = 0
where [A,B] = AB − BA (commutator)

⇒ No 1-dim termination proof for {ab → ba}.

• Dimension 2: [[A,B]2, C] = 0
⇒ No 2-dim termination proof for
{abcbc → cbcba, acbcb → bcbca, bccba → abccb, cbbca → acbbc}

(Is RFC match-bounded. Matrix proof not known.)

Similar identities hold for matrix rings of any dimension.
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Limitation: Dimension restrictions
A matrix ring is not free: Certain polynomial identities hold.

• Dimension 1: [A,B] = 0
where [A,B] = AB − BA (commutator)

⇒ No 1-dim termination proof for {ab → ba}.

• Dimension 2: [[A,B]2, C] = 0
⇒ No 2-dim termination proof for
{abcbc → cbcba, acbcb → bcbca, bccba → abccb, cbbca → acbbc}

(Is RFC match-bounded. Matrix proof not known.)

Similar identities hold for matrix rings of any dimension.

Define SRS hierarchy by“minimal matrix proof dimension”:

• Is every level inhabited? Which levels are decidable?
[Gebhardt, Waldmann 2008]
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Proof Verification

• Although probably hard to find, a termination proof via
matrix interpretations is easy to verify . . .

• . . . and verification is fast: PTIME
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Proof Verification

• Although probably hard to find, a termination proof via
matrix interpretations is easy to verify . . .

• . . . and verification is fast: PTIME

• Even if the matrix type is not“syntactically” specified:
• It is decidable whether an arbitrary matrix

interpretation i satisfies i(R) ⊆ core(i(Σ)).

• Even more: we can effectively determine a finite set
C ⊆ P such that core(i(Σ)) = {d ≥ c | c ∈ C}.
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Weighted Automata
Transitions have a natural number as weight:

A weighted automaton“is”a mapping Q × Σ × Q → N.

This mapping is extended to Q × Σ∗ × Q → N:

• multiply weights along a single path,

• add weights of different paths.
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Weighted Automata
Transitions have a natural number as weight:

A weighted automaton“is”a mapping Q × Σ × Q → N.

This mapping is extended to Q × Σ∗ × Q → N:

• multiply weights along a single path,

• add weights of different paths.

W.l.o.g. Q = {1, . . . , n}.
For a transition from state p to state q with weight n
for letter a, the following representations are equivalent:

• State diagram: p a:n q

• Matrix interpretation: i(a)p,q = n
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Weighted Automata (cont’d)

• Matrix multiplication computes the transitive closure:

For x ∈ Σ∗, the weight of path p x q is i(x)p,q
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Weighted Automata (cont’d)

• Matrix multiplication computes the transitive closure:

For x ∈ Σ∗, the weight of path p x q is i(x)p,q

• “Standard”automata: Q × Σ × Q → {0, 1}.

• Other (semi-)rings possible . . .
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Zantema’s System (cont’d)
The above matrix interpretation:

a 7→









1 1 0 0 0
0 0 1 0 0
0 1 0 0 0
0 2 0 0 0
0 0 0 0 1









b 7→









1 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 2 1 0 1
0 0 0 0 1









(ℓ → r) 7→







1 2 1 0 1
0 0 0 0 0
0 2 1 0 1
0 4 2 0 2
0 0 0 0 1






−







1 2 1 0 0
0 0 0 0 0
0 2 0 0 1
0 1 2 0 2
0 0 0 0 1






=









0 0 0 0 1
0 0 0 0 0
0 0 1 0 0
0 3 0 0 0
0 0 0 0 0









proves termination since

• all entries are ≥ 0 and

• marked entries are ≥ 1
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Zantema’s System (cont’d)

The same termination proof as a weighted automaton:

a:1,b:1
a:1 a:1 b:1

a:1

b:1

b:1

a:2,b:2

a:1,b:1
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Example: {aa → bc, bb → ac, cc → ab}

Solution for RTA List of Open Problems #104:

Σ:1
b:1

a:2,c:1

b:1

b:2

a:1

Σ:1

Σ:1

c:1

a:2,c:2

a:1,c:2

Σ:1

A variant was published as a monotone algebra in IPL’06.
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Automata: Large and Sparse
• Example: {bbcabc → abbcbca} (z061)
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Automata: Large and Sparse
• Example: {bbcabc → abbcbca} (z061)

1Σ:1
b:1

2
b:1

3
c:1

4
a:1

5
b:1

6
c:1

7 Σ:1

Done.
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Automata: Large and Sparse
• Example: {bbcabc → abbcbca} (z061)

1Σ:1
b:1

2
b:1

3
c:1

4
a:1

5
b:1

6
c:1

7 Σ:1

Done.

• Example: {bcabbc → abcbbca} (z062)

1Σ:1
b:1

2
c:1

3
a:1

4
b:1

5
b:1

6
c:1

7 Σ:1

No: weight
(

1
bcabbc

4
)

= 0 � 1 = weight
(

1
abcbbca

4
)
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Automata: Large and Sparse
• Example: {bbcabc → abbcbca} (z061)

1Σ:1
b:1

2
b:1

3
c:1

4
a:1

5
b:1

6
c:1

7 Σ:1

Done.

• Example: {bcabbc → abcbbca} (z062)

1Σ:1
b:1

2
c:1

3
a:1

4
b:1

5
b:1

6
c:1

c:1

7 Σ:1

Done: weight
(

1
bcabbc

4
)

= 1 = weight
(

1
abcbbca

4
)
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Matrix Int’s for Term Rewriting

Linear combinations of matrix interpretations
[Endrullis, Waldmann, Zantema 2006]

• monotone algebra framework

• vectors as domain: Nn

• interpretations of the form

fτ (~v1, . . . , ~vn) = M1 ~v1 + · · · + Mn ~vn + ~v

where Mi ∈ Nn×n with (Mi)1,1 > 0 and ~v ∈ Nn
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Matrix Int’s for Terms (cont’d)

Dependency pairs [Arts, Giesl 2000]

SN(R) iff SN(DP(R)top/R)

• The matrix method supports relative termination ⇒
it supports this basic version of the DP method

• Marker symbols encode the idea that DP(R) steps only
happen at the left end (for terms: top position).
[Endrullis, Waldmann, Zantema 2006]: the matrix
method can be adapted to relative top-termination

• and can be combined with refinements
[Hirokawa, Middeldorp 2004]
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Problems

• Further instances of the general scheme are conceivable:
Other matrix classes?

• Explain the relationship between proofs
via EI and via MI .

• Explain the relationship between proofs
via MI and via MI ′ for I 6= I ′.

• A normal form for MI-proofs?

• Good heuristics for backward completion
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Grand Unified Theory
• Matrix interpretations are weighted finite automata.

• The method of (RFC) match-bounds also builds on
weighted (annotated) automata.

Unified view  [Waldmann, work in progress]

• Natural semi-ring (N,+, ·, 0, 1)

• Boolean semi-ring ({0, 1},+, ·, 0, 1)

• Tropical semi-ring (N ∪ {∞},min,+,∞, 0)
[W ’08, unpublished]: subsumes match-boundedness

• Arctic semi-ring (N ∪ {−∞},max,+,−∞, 0)
[W ’07]: subsumes quasi-periodic interpretations
by [W, Zantema ’07]

• . . . below zero (Z ∪ {−∞},max,+,−∞, 0)
[Koprowski, W ’08]
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Derivational Complexity
Research program

• Deduce upper/lower bounds on derivation lengths from
termination proofs.

• Characterize complexity classes via termination proof
methods.

The derivation height of term t modulo system R is

dhR(t) = max{n | ∃s : t →n
R s}

The derivational complexity of R is

dcR(n) = max{dhR(t) | size(t) ≤ n}

• exercise: show dcR(n + 1) ≥ dcR(n)

• exercise: show dcR(n) ∈ Ω(n) for non-trivial R
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String Rewriting: Examples
1. R = {aa → aba}, dcR ∈ Θ(n)
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String Rewriting: Examples
1. R = {aa → aba}, dcR ∈ Θ(n)

2. R = {ab → ba}, dcR ∈ Θ(n2)
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String Rewriting: Examples
1. R = {aa → aba}, dcR ∈ Θ(n)

2. R = {ab → ba}, dcR ∈ Θ(n2)

3. R = {ab → baa}, dcR ∈ Θ(2n)
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String Rewriting: Examples
1. R = {aa → aba}, dcR ∈ Θ(n)

2. R = {ab → ba}, dcR ∈ Θ(n2)

3. R = {ab → baa}, dcR ∈ Θ(2n)

4. R = {aabab → aPb, aP → PAa, aA → Aa,
bP → bQ,QA → aQ,Qa → babaa}

dcR not primitive recursive (Ackermann)
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String Rewriting: Examples
1. R = {aa → aba}, dcR ∈ Θ(n)

2. R = {ab → ba}, dcR ∈ Θ(n2)

3. R = {ab → baa}, dcR ∈ Θ(2n)

4. R = {aabab → aPb, aP → PAa, aA → Aa,
bP → bQ,QA → aQ,Qa → babaa}

dcR not primitive recursive (Ackermann)

5. Etc. (string rewriting is computationally complete)
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String Rewriting: Examples
1. R = {aa → aba}, dcR ∈ Θ(n)

2. R = {ab → ba}, dcR ∈ Θ(n2)

3. R = {ab → baa}, dcR ∈ Θ(2n)

4. R = {aabab → aPb, aP → PAa, aA → Aa,
bP → bQ,QA → aQ,Qa → babaa}

dcR not primitive recursive (Ackermann)

5. Etc. (string rewriting is computationally complete)

We can deduce some of these bounds automatically:

1. via match bounds

2. via upper triangular 3 × 3 matrix interpretations

3. via matrix interpretations
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Some Results for Term Rewriting

• polynomial interpretations  doubly exponential
[Lautemann / Geupel / H / Zantema / . . . ]

• multiset path orders  primitive recursive [H]

• lexicographic path orders  multiple recursive
[Weiermann]

• Knuth-Bendix orders  multiple recursive (2-rec)
[H, Lautemann / Touzet / Lepper / Bonfante / Moser]

• Related [Buchholz / Touzet / Weiermann / Moser . . . ]

• match bounds  linear [Geser, H, Waldmann]

• matrix interpretations  exponential [H, Waldmann],
polynomial in particular cases [Waldmann]

• context-dependent interpretations  see below [H]
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Research Problem
Challenge: Small complexity classes.
Here, upper bound results heavily overestimate dcR.

Some remedies:

• Syntactic restrictions of standard path orders
• light multiset path order LMPO [Marion 2003]

• polynomial path order POP∗: innermost derivations
on constructor-based terms [Avanzini, Moser 2008],
cf. [Bellantoni, Cook 1992]

• Matrix interpretations of particular shape
[Waldmann 2007]

• Context-dependent interpretations
[H 2001 / Schnabl, Moser 2008]
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Interpretations and Derivation Lengths

For an interpretation τ for R into a Σ-algebra over N,
s →R t implies τ(s) > τ(t). Thus, for t ∈ TΣ,

dhR(t) ≤ τ(t)

• Main Lemma. Let τ be a monotone interpretation for R
into (N,≥) and let p : N → N be strictly monotone such
that for all f ∈ Σ and k ∈ N, p(k) ≥ fτ (k, . . . , k). Then

dhR(t) ≤ pdepth(t)(0)

dcR(n) ≤ pn(0)

• Proof: exercise (hints: induction on t; depth(t) ≤ size(t))
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Corollaries

1. If p is a linear function, then dcR(n) ∈ 2O(n).

2. If p is a polynomial, then dcR(n) ∈ 22O(n)

.

3. If p is an exponential function, then dcR(n) ∈ E4.

4. If p ∈ Ek, then dcR(n) ∈ Ek+1, for k ≥ 2.

Here, Ek denotes the k-th level of the Grzegorczyk hierarchy.

Remark: 2. and 3. are special cases of 4.
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Example
Consider the (length preserving) system FIB

{aab → bba, b → a}
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Example
Consider the (length preserving) system FIB

{aab → bba, b → a}

• exponential lower bound:
bn →k bn−1a where k ≥ fib(n) (Fibonacci number)

bn →≥fib(n−1) bn−2ab →≥fib(n−2) bn−3aab → bn−3bba = bn−1a
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Example
Consider the (length preserving) system FIB

{aab → bba, b → a}

• exponential lower bound:
bn →k bn−1a where k ≥ fib(n) (Fibonacci number)

bn →≥fib(n−1) bn−2ab →≥fib(n−2) bn−3aab → bn−3bba = bn−1a

• termination proof by linear functions:

τ : a 7→ λn.2n, b 7→ λn.2n + 1

thus τ(aabw) = 8τ(w) + 4 > 8τ(w) + 3 = τ(bbaw),
which implies a single exponential upper bound
by the main lemma: choose p = τ(b)
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Example

Consider the system CNF

¬(x ∧ y) → ¬(x) ∨ ¬(y)

¬(x ∨ y) → ¬(x) ∧ ¬(y)

x ∨ (y ∧ z) → (x ∨ y) ∧ (x ∨ z)

(x ∧ y) ∨ z → (x ∨ z) ∧ (y ∨ z)

• CNF allows derivation heights not bounded by any
elementary function (exercise), thus by the above
corollary no polynomial interpretation can prove
termination, as conjectured by Dershowitz.

• Termination can be proven using exponential functions,
however (exercise).
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Embedding Relations
From homeomorphic embedding to path orderings . . .

• Define the rewriting system HE as

f(x1, . . . , xn) → xi

The homeomorphic embedding relation is >HE = →+
HE

.

• For a given precedence > (well-founded ordering on Σ),
define the rewriting system HP as

f(x1, . . . , xn) → c<f [x1, . . . , xn]

where c<f denotes any context with symbols < f .

>HP = →+
HP

is the homeomorphic embedding with
precedence.

ISR 2008 – Obergurgl, Austria – p.87/111



Embedding Relations (cont’d)

• For a given precedence > the rewriting system PE is

f(x1, . . . , xn) → c<f [x1, . . . , xn]

f(x1, . . . , g(y1, . . . , ym), . . . , xn) →

c<f [f(x1, . . . , y1, . . . , xn), . . . , f(x1, . . . , ym, . . . , xn)]

>PE = →+
PE

is called primitive embedding .

• similarly: generalized embedding

• multiset path order

• lexicographic/recursive path order
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Embedding Relations (cont’d)

Via the Key Lemma:

• homeomorphic embedding implies
linear upper bound on dcR

• homeo. embedding with precedence implies
single exponential upper bound on dcR

• primitive / generalized embedding / mpo imply
primitive recursive upper bound on dcR

• etc.
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Traditional Interpretations

For an interpretation τ for R into a Σ-algebra over N,
s →R t implies τ(s) − τ(t) ≥ 1. Thus

dhR(t) ≤ τ(t)

• τ as a Σ-homomorphism:

τ(f(. . . t . . . )) = fτ (. . . τ(t) . . . )

• all functions fτ strictly monotone

Then it suffices to show τ(ℓγ) − τ(rγ) ≥ 1.
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Example abx → bax
Choose

aτ (n) = 2n

bτ (n) = 1 + n

cτ = 0

Then τ(abt) − τ(bat) = 2(1 + τ(t)) − (1 + 2τ(t)) = 1.
Both aτ and bτ are strictly monotone.

For instance τ(anbmc) = 2n · m but dhR(anbmc) = n · m

Huge Gap. Problem:

τ(ak ab t) − τ(ak ba t) = 2k,

reflecting one rewrite step.
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Context-dependent Interpretations
• Now, interpretation τ is parameterized with ∆ ∈ Q+

0 .

• Show s →R t implies τ [∆](s) − τ [∆](t) ≥ ∆. Then

dhR(t) ≤ τ [∆](t)/∆

Thus

dhR(t) ≤ inf
∆>0

τ [∆](t)

∆

• Term evaluation now depends on ∆:

τ [∆](f(. . . ti . . . )) = fτ [∆](. . . τ [f i
τ (∆)](ti) . . . )

• Extra constraints to ensure that
τ [∆](ℓγ) − τ [∆](rγ) ≥ ∆ suffices: ∆-monotonicity
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Example abx → bax (cont’d)

Idea: introduce parameter via 2 7→ 1 + ∆.

From here on, no creative step is needed at all. Choose

aτ [∆](z) = (1 + ∆)z

bτ [∆](z) = 1 + z

cτ [∆] = 0

The ∆-monotonicity constraint is (analogously for bτ )

aτ [∆](z + a1
τ (∆)) − aτ [∆](z) ≥ ∆

That is, aτ [∆] propagates a difference of at least ∆, provided

a difference of at least a1
τ (∆) (in argument 1) is given.
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Example abx → bax (cont’d)

Solving these constraints gives

a1
τ (∆) ≥

∆

1 + ∆

b1
τ (∆) ≥ ∆

Choosing = for ≥, we found rather systematically

τ [∆](a(t)) = (1 + ∆) · τ
[ ∆

1 + ∆

]

(t)

τ [∆](b(t)) = 1 + τ [∆](t)

τ [∆](c) = 0
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Example abx → bax (cont’d)

• Show τ [∆](abt) − τ [∆](bat) ≥ ∆ (exercise)

• E.g. τ [∆](anbmc) = (1 + ∆n)m

Thus

dhR(anbmc) ≤ inf
∆>0

τ [∆](. . . )

∆
= inf

∆>0

( 1

∆
+ n
)

m = n · m

For this system,

inf
∆>0

τ [∆](t)

∆
= dhR(t)

in fact holds for every term t (exercise): exact bounds
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Example (x ◦ y) ◦ z → x ◦ (y ◦ z)

Traditionally,

◦τ (n1, n2) = 2n1 + n2 + 1

By the same creative step as above guess

◦τ [∆](z1, z2) = (1 + ∆)z1 + z2 + 1

Solving the ∆-monotonicity constraints yields

τ [∆](s ◦ t) = (1 + ∆) · τ
[ ∆

1 + ∆

]

(s) + τ [∆](t) + 1

Remark: proof of τ [∆](ℓγ) − τ [∆](rγ) ≥ ∆ uses induction.
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(x ◦ y) ◦ z → x ◦ (y ◦ z) (cont’d)

Again for every term t (exercise)

inf
∆>0

τ [∆](t)

∆
= dhR(t)

• Expl: For the“left comb” ℓ of depth n

τ [∆](ℓ) = n + ∆n(n − 1)/2

thus dhR(ℓ) ≤ inf∆>0 τ [∆](ℓ)/∆ = n(n − 1)/2

• Expl: For the“right comb”r of depth n

τ [∆](r) = n

thus dhR(r) ≤ inf∆>0 τ [∆](r)/∆ = 0
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Monotonicity revisited

Strict monotonicity

m > n implies fτ (. . . m . . . ) > fτ (. . . n . . . )

is (over N) equivalent to

m − n ≥ 1 implies fτ (. . . m . . . ) − fτ (. . . n . . . ) ≥ 1

thus equivalent to strict monotonicity of >1, where

m >1 n iff m − n ≥ 1

• >1 is total on N

• >1 is not total on Q+
0 (but well-founded)
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Expl g(a) → g(b), f(b) → f(a)
• No interpretation into N with τ(ℓ) >1 τ(r) and

strict monotonicity modulo >1 exists (why?)

• It does exist into (Q+
0 , >1), even into a finite subset:

1

1/3 2/3

0

aτ = 1/3
bτ = 2/3
fτ

gτ

• Exercise: verify τ(ℓ) >1 τ(r); strict monotonicity of >1
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Expl ffx → fgf

• Not simply terminating

• An interpretation into (Q+
0 , >1) exists:

fτ (z) = n + 1/2 if n − 1 < z ≤ n

gτ (z) = n if n − 1/2 < z ≤ n + 1/2

• The resulting (linear) upper bound

dh(t) = ⌊τ(t)⌋

is exact (exercise).
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Context-dependent Int’s: Remarks
• Even if exact bounds are not achievable,

improved bounds can be derived.

• Proving that bounds are exact: typically needs
knowledge about optimal / worst case rewrite strategies.

• Top-down propagation of ∆ versus
bottom-up term evaluation: two-phase transducer.

• Here: weak context-dependency. Only a non-local strong
version would deserve to be called context-sensitive.

• Implementation

• Non-trivial calculations  computer algebra?

• Inductive proofs  theorem prover?

• Work by [Schnabl/Moser]: cdiprover3  demo
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Relative Termination
Let S = {ab → baa}, R = {cb → bbc}.
Consider R-steps in R ∪ S-derivations.

The interpretation Σ → (N → N) with

a 7→ λn.n b 7→ λn.n + 1 c 7→ λn.3n

is constant for S and decreasing for R

⇒ number of R-steps is 2O(n).
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Relative Termination
Let S = {ab → baa}, R = {cb → bbc}.
Consider R-steps in R ∪ S-derivations.

The interpretation Σ → (N → N) with

a 7→ λn.n b 7→ λn.n + 1 c 7→ λn.3n

is constant for S and decreasing for R

⇒ number of R-steps is 2O(n).

Relative termination allows to remove rules successively  

• Modular termination proofs

• Automatic methods for proving relative termination are
incorporated in all state of the art termination provers.

•  Annual termination competition [WST]
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The Problem

Let R and S be rewriting systems.
Assume termination of R ∪ S has been shown
by proving termination of R/S and termination of S.

• Give a bound on dcR∪S in terms of dcR/S and dcS .

Note: Proof methods for relative termination
can handle situations where S is not terminating.
Here we assume that S is terminating.
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Basic Observation
Let ∆R = max{|r| −̇ |ℓ| | (ℓ → r) ∈ R}, and assume (for
simplicity) that this implies max{|x| −̇ |y| | x →R y} ≤ ∆R.

• Note: ∆R = 0 in case R is not size-increasing.

Now consider an arbitrary finite derivation modulo R ∪ S:

x0 →∗
S x′

0 →R x1 →∗
S x′

1 →R x2 →∗
S · · · →∗

S x′
k−1 →R xk →∗

S x′
k

Define δ : N → N by δ(n) = n + ∆S · dcS(n) + ∆R. Then

|xi+1| ≤ δ(|xi|).

Monotonicity of dcS implies monotonicity of δ, thus

|xi+1| ≤ δi(|x0|).
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The General Upper Bound

x0 →∗
S x′

0 →R x1 →∗
S x′

1 →R x2 →∗
S · · · →∗

S x′
k−1 →R xk →∗

S x′
k

. . . thus the length of the above derivation is bounded by

dcR∪S(|x0|) ≤ dcR/S(|x0|) +
k
∑

i=0

dcS(|xi|)

≤ dcR/S(|x0|) +
k
∑

i=0

dcS

(

δi(|x0|)
)

We have δi+1(n) ≥ δi(n) by δ(n) ≥ n. Since k ≤ dcR/S(|x0|),

dcR∪S(n) ∈ O
(

dcR/S(n) · dcS

(

δdcR/S(n)(n)
)

)
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Particular Cases
• R and S not size-increasing: δ(n) = n

dcR∪S(n) ∈ O
(

dcR/S(n) · dcS

(

n)
)

Multiplication
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Particular Cases
• R and S not size-increasing: δ(n) = n

dcR∪S(n) ∈ O
(

dcR/S(n) · dcS

(

n)
)

Multiplication

• S not size-increasing:
δ(n) = n + ∆R, thus δi(n) = n + i · ∆R

dcR∪S(n) ∈ O
(

dcR/S(n) · dcS

(

n + dcR/S(n) · ∆R)
)

Composition
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Particular Cases
• R and S not size-increasing: δ(n) = n

dcR∪S(n) ∈ O
(

dcR/S(n) · dcS

(

n)
)

Multiplication

• S not size-increasing:
δ(n) = n + ∆R, thus δi(n) = n + i · ∆R

dcR∪S(n) ∈ O
(

dcR/S(n) · dcS

(

n + dcR/S(n) · ∆R)
)

Composition

• S size-increasing: δ ∈ Θ(dcS)

dcR∪S(n) ∈ O
(

dcR/S(n) · dc
dcR/S(n)+1
S (n)

)

Iteration
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Consequences

• Consider function classes with certain closure properties:
• Closed under addition, multiplication, composition

Example: polynomials

• Closed under iteration
Example: primitive recursive functions
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Consequences

• Consider function classes with certain closure properties:
• Closed under addition, multiplication, composition

Example: polynomials

• Closed under iteration
Example: primitive recursive functions

• Can this general bound be improved?
No, as the following generic construction reveals.
(For string rewriting, therefore can be done in every
sufficiently rich rewriting model.)
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The Lower Bound Result
The general upper bound can be attained,
even for string rewriting. Proof:

Take arbitrary string rewriting systems R0 over Σ, S0 over Γ
(w.l.o.g. disjoint alphabets) and add new letters σ, γ. Define

R = {l → rσ | (l → r) ∈ R0} (introduce marker)

S = S0 ∪ {σa → aσ | a ∈ Σ} (move marker)

∪ {σ → γ} (switch markers)

∪ {γb → cγ | b, c ∈ Γ} (nondeterministic reset)

We have dcR0
≈ dcR/S , dcS0

+Θ(n2) ≈ dcS and

dcR∪S = Θ(upper bound in terms of dcR/S and dcS).

So the construction shows optimality if dcS ∈ Ω(n2).
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Example: Polynomial Upper Bound
Bk = {ki → jk | k > i, j}

Rd = B2 ∪ · · · ∪ Bd

over alphabet {1, 2, . . . , d}. The bound dcRd
∈ Θ(nd) can be

shown via some matrix interpretation of dimension d + 1.
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Example: Polynomial Upper Bound
Bk = {ki → jk | k > i, j}

Rd = B2 ∪ · · · ∪ Bd

over alphabet {1, 2, . . . , d}. The bound dcRd
∈ Θ(nd) can be

shown via some matrix interpretation of dimension d + 1.

A simpler proof via relative termination:

• Show SN(Bd/Rd−1) via the interpretation

{1, . . . , d − 1} 7→
(

1 0 0
0 1 1
0 0 1

)

, d 7→
(

1 1 0
0 1 0
0 0 1

)

• dcBd/Rd−1
∈ O(n2) (matrices are upper triangular)

• Bd and Rd−1 are size-preserving, so the upper bound

result implies (by induction) dcRd
∈ O(n2(d−1)) .

Bound is overestimated, but nevertheless polynomial.
Termination proof much easier to find.
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Discussion
• Can the general upper bound be reached for

dcS ∈ O(n)?
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Discussion
• Can the general upper bound be reached for

dcS ∈ O(n)? Yes for term rewriting:

R = {f(s(x), y, z) → f(x, z, y) | x, y, z ≥ 0}

S = {f(x, s(y), z) → f(x, y, s(s(z))) | x, y, z ≥ 0}

Here, dcR/S ∈ O(n) and dcS ∈ O(n), but dcR∪S is

exponential: f(sn(0), 1, 0) →∗ f(0, 0, s2n

(0)).
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R = {f(s(x), y, z) → f(x, z, y) | x, y, z ≥ 0}

S = {f(x, s(y), z) → f(x, y, s(s(z))) | x, y, z ≥ 0}

Here, dcR/S ∈ O(n) and dcS ∈ O(n), but dcR∪S is

exponential: f(sn(0), 1, 0) →∗ f(0, 0, s2n

(0)).

• Remark: Similarly with binary symbol f .
Exercise: How about unary symbols only,
i.e. for string rewriting?
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Discussion
• Can the general upper bound be reached for

dcS ∈ O(n)? Yes for term rewriting:

R = {f(s(x), y, z) → f(x, z, y) | x, y, z ≥ 0}

S = {f(x, s(y), z) → f(x, y, s(s(z))) | x, y, z ≥ 0}

Here, dcR/S ∈ O(n) and dcS ∈ O(n), but dcR∪S is

exponential: f(sn(0), 1, 0) →∗ f(0, 0, s2n

(0)).

• Remark: Similarly with binary symbol f .
Exercise: How about unary symbols only,
i.e. for string rewriting?

• Make the implicit notion of“abstract reduction system
with size measure”explicit.
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