Advanced Topics in Termination

3rd International School on RewritingObergurgl, Austria, 21-23 July ²⁰⁰⁸

> Dieter HofbauerBA NordhessenGermany

> > ISR 2008 – Obergurgl, Austria – p.1/111

Rewriting

Why study rewriting? Well ...

- oriented equations
- universal computation model
- model for non-deterministic processes

Specific classes of rewriting systems: string $/$ term $/$ higher-order $/$ graph $/$ \ldots

String Rewriting

Why study string rewriting?

- oriented equations \rightsquigarrow (semi-) group theory
- universal computation model \rightsquigarrow recursion / complexity theory
- particular case of linear term rewriting (why?)
- prototype for more genera^l rewriting systems:
	- concepts easier to invent
	- concepts easier to explain
	- concepts often generalize (to linear rewriting . . .)
	- undecidability results transfer

String Rewriting: Definitions

- Letter: element of a set Σ , the alphabet
- String: sequence of letters \varSigma^* is the set of strings over Σ
- String rewriting system: set of rules of the form $\ell\to r,$ i.e. a set $R \subseteq \Sigma^*$ * \times Σ^{\ast}
- Rewrite step: replace the left hand side of rule $\ell\to r$ by its right hand side: $x \ell y \to_R x r y$ within context $x,y \in \Sigma$ R xry within context $x,y \in \Sigma^*$
- Derivation: chain of rewrite steps

Term Rewriting: Definitions

- Symbol: element of a set Σ , the signature
- Term: tree. \mathcal{T}_{Σ} is the set of ground terms over $\Sigma,$ $\mathcal{T}_{\Sigma}(\mathcal{V})$ is the set of terms with variables from \mathcal{V}
- Term rewriting system: set of rules of the form $\ell \rightarrow r,$ i.e. a set $R \subseteq \mathcal{T}_{\Sigma}(\mathcal{V}) \times \mathcal{T}_{\Sigma}(\mathcal{V})$
- Rewrite step: replace the left hand side of rule $\ell \rightarrow r$ by its right hand side: $c[\ell\sigma] \to_R c[r\sigma]$ within context c under substitution σ
- Derivation: chain of rewrite steps

Termination

Why study termination? Well ...

System R is terminating
if any R derivation conta

if any R -derivation contains only finitely many steps.

- Notation $\mathrm{SN}(R)\text{: }R$ is strongly normalizing
- That is, \rightarrow_R^+ is well-founded.

Expl.s of terminating (why?) systems:

- $\{aab \rightarrow ba\}$
- $\{ab \rightarrow ba\}$
- $\{ab \rightarrow baa\}$
- $\{aa \rightarrow aba\}$

 $R = \{aa \rightarrow bc, bb \rightarrow ac, cc \rightarrow ab\}$ induces derivation

 $b\;b\;{\fbox{$a$}}\;a\;{\fbox{$a$}}\to_R$ $b \mid b \mid b \mid c \rightarrow_R$ $b \ a \ c \ c \end{bmatrix} \rightarrow_R$ $b \mid a \mid a \mid b \rightarrow_R$ $\left\lfloor b\right\rfloor c$ $b\rightarrow _{R}$ $a \lfloor c \, c \rfloor b \rightarrow_R$ $a\ a\ b\ b\ \rightarrow_R \cdots \cdots$

• Is there an infinite derivation?

 $R = \{aa \rightarrow bc, bb \rightarrow ac, cc \rightarrow ab\}$ induces derivation

 $b\;b\;{\fbox{$a$}}\;a\;{\fbox{$a$}}\to_R$ $b \mid b \mid b \mid c \rightarrow_R$ $b \ a \ c \ c \end{bmatrix} \rightarrow_R$ $b \mid a \mid a \mid b \rightarrow_R$ $\left\lfloor b\right\rfloor c$ $b\rightarrow _{R}$ $a \lfloor c \, c \rfloor b \rightarrow_R$ $a\ a\ b\ b\ \rightarrow_R \cdots \cdots$

- Is there an infinite derivation?No (was open for some time)
- How long can derivations get?

 $R = \{aa \rightarrow bc, bb \rightarrow ac, cc \rightarrow ab\}$ induces derivation

 $b\;b\;{\fbox{$a$}}\;a\;{\fbox{$a$}}\to_R$ $b \mid b \mid b \mid c \rightarrow_R$ $b \ a \ c \ c \end{bmatrix} \rightarrow_R$ $b \mid a \mid a \mid b \rightarrow_R$ $\left\lfloor b\right\rfloor c$ $b\rightarrow _{R}$ $a \lfloor c \, c \rfloor b \rightarrow_R$ $a\ a\ b\ b\ \rightarrow_R \cdots \cdots$

- Is there an infinite derivation?No (was open for some time)
- How long can derivations get? Exponential bound in size of starting string (trivial)Open problem: polynomial upper bound?

Derivational Complexity: Definition

The *derivation height* of term t modulo system R is
the magnetic state of an R derivation starting in $t_{\rm s}$ the maximal length of an R -derivation starting in t :

$$
\mathrm{dh}_R(t) = \max\{n \mid \exists s : t \to_R^n s\}
$$

The *derivational complexity* of R maps natural number n to the maximal derivation height of terms of size at most $n\colon$

$$
\mathrm{dc}_R(n) = \max\{\mathrm{dh}_R(t) \mid \mathrm{size}(t) \le n\}
$$

This is ^a worst case complexity measure.

Exercise: How about the following systems?

• ${aab \rightarrow ba}$, ${ab \rightarrow ba}$, ${ab \rightarrow baa}$, ${ab \rightarrow baa}$, ${aa \rightarrow aba}$

Derivational Complexity: Exercises

Find lower bounds for the derivational complexity of

•
$$
R_1 = \{ba \rightarrow acb, bc \rightarrow abb\}
$$

•
$$
R_2 = \{ba \rightarrow acb, bc \rightarrow cbb\}
$$

•
$$
R_3 = \{ba \rightarrow aab, bc \rightarrow cbb\}
$$

Hint: one system is doubly exponential, one is multiplyexponential, one is non-terminating.

^A lower bound is proven by presenting ^a family of derivationsthat achieves the desired length.

Relative Termination

allows to remove rules successively \leadsto modular termination proofs

System R is *terminating relative to* system S if any $R\cup S$ -derivation contains only finitely many R -steps.

- \bullet Notation: $\mathrm{SN}(R/S)$
- \bullet That is, $(\rightarrow^{*}_{S}$ $\stackrel{*}{S} \circ \rightarrow_R \circ \rightarrow_S^*$ $\zeta^*_S)^+$ is well-founded

Expl: $\{aa\to aba\}$ is terminating relative to $\{b\to bb\}$.

 $\mathrm{SN}(R/S)$ and $\mathrm{SN}(S)$ imply $\mathrm{SN}(R\cup S)$

Course Outline

- Termination proofs
	- $\bullet\,$ direct $/$ incremental $/$ transformations
- Match bounds
	- $\bullet\,$ automata $/$ regularity preservation
- Matrix interpretations
	- $\bullet\,$ heuristics $/$ weighted automata
- Derivational complexity
	- $\bullet\,$ interpretations $/$ context-dependent int's
	- path orders
	- relative termination
- Miscellaneous
	- competition
	- live demos

[www.termination-portal.or](www.termination-portal.org)g

- people
- workshop on termination (1st WST'93 9th WST'07)
- termination competition ('04 '07)
- tools, e.g.
	- AProVE [Giesl et al.]
	- Jambox [Endrullis]
	- Matchbox [Waldmann]
	- MultumNonMulta [Hofbauer]
	- Torpa [Zantema]
	- TTT(2) [Middeldorp et al.]
- problems

 termination problem data base (tpdb) at[www](www.lri.fr/~marche/termination-competition/).[lri](www.lri.fr/~marche/termination-competition/).[fr/~marche/termination-competiti](www.lri.fr/~marche/termination-competition/)on/

Termination via Interpretations

Interpretations as order preserving mappingsinto well-founded domains:

- Let R be a rewriting system over Σ .
- Let (D, \geq_{D}) be a well-founded partial order.

If a mapping $\tau : \mathcal{T}_{\Sigma} \to D$ is order preserving (monotone)

• from $(\mathcal{T}_{\Sigma}, \rightarrow_R +$ $^{+})$ to $(D,>_{D})$

then R is terminating.

Relative Termination

Straightforward generalization to relative termination:

- Let R and S be rewriting systems over Σ .
- Let (D, \geq_{D}) be a well-founded partial order.

If a mapping $\tau : \mathcal{T}_\Sigma \to D$ is order preserving

- from $(\mathcal{T}_{\Sigma}, \rightarrow_R +$ $^{+})$ to $(D,>_{D})$ and
- from $(\mathcal{T}_{\Sigma}, \rightarrow_S^+)$ to (D, \geq) $^{+})$ to (D,\geq_D) ,

then R is terminating relative to S .

Interpretations (cont'd)

 R is terminating iff there is a well-founded ordering $>$ on \mathcal{T}_{Σ} such that, for all $t, t' \in \mathcal{T}_{\Sigma}$,

 $t\rightarrow_R t'$ implies $t>t'$

(Exercise: show "only if".)

• For *interpretations* choose $>$ as an ordering induced by a function $\tau:\mathcal{T}_{\Sigma}\to D$ as above:

 τ is an *interpretation for* R *into* (D, \geq_D) *if, for all* $t, t' \in \mathcal{T}_\Sigma$ *,*

$$
t \rightarrow_R t'
$$
 implies $\tau(t) >_D \tau(t')$

- Are interpretations a "universal" proof method, i.e., do they apply to *all* terminating rewriting systems?
- In which cases can D be specialized to \mathbb{N} ?

Interpretations (cont'd)

• Are interpretations a *"universal"* proof method, i.e., do they apply to *all* terminating rewriting systems?

Yes: Let $D=\mathcal{T}_{\Sigma},$ $>_{D}=\rightarrow^{+}_{R}$ <u>ווחה החב זו החוזכחור</u> ^+_R , τ the identity on $\mathcal{T}_{\Sigma}.$ R is terminating if and only if an interpretation for R into some well-founded partial ordering exists.

• In which cases can D be specialized to \mathbb{N} ?

For finitely branching terminating systems: Let $\tau = \mathrm{dh}$ $R\cdot$ (Note that dh_R R is terminating if and only if an interpretation for R R is well-defined for finitely branching R .) into (\mathbb{N}, \geq) exists.

Exercise: show that no interpretation for $\{a \rightarrow f^i(b) \mid i \in \mathbb{N}\} \cup \{f(b) \rightarrow b\}$ into (\mathbb{N}, \geq) exists.

Homomorphic Interpretations

Each function symbol f is associated with a function f_{τ} of same arity on the underlying well-founded set $(\Sigma\text{-}algebra).$ Ground terms are interpreted via *homomorphic extension*:

$$
\tau\big(f(t_1,\ldots,t_n)\big)=f_\tau\big(\tau(t_1),\ldots,\tau(t_n)\big)
$$

• Expl.: A homomorphic interpretation for $\{ffx \to fgfx\}$

over $\Sigma = \{a, f, a\}$ into $(N >)$. Choose $a = 1$ and over $\Sigma = \{a, f, g\}$ into (\mathbb{N}, \geq) : Choose $a_{\tau} = \tau$ $_{\tau} = 1$ and

$$
f_{\tau} = \begin{cases} n+2 & \text{if } n \text{ is even} \\ n-1 & \text{else} \end{cases} \qquad g_{\tau} = \begin{cases} n+1 & \text{if } n \text{ is even} \\ n & \text{else} \end{cases}
$$

Hint: show $\tau(t)=2k$ if $t=$ the first control of the control of where k is the number of factors ff in $t.$ $f(\dots)$, else $\tau(t) = 2k + 1$,

Homomorphic Int's (cont'd)

- Again, homomorphic interpretations are "universal". Let $D=\mathcal{T}_{\Sigma},$ $>_{D}=\rightarrow^{+}_{R}$ Choose $f_\tau=f$, thus $\,R$ $\mathop{R}\limits^+_{(A)}$ as before. = f , thus $\tau(t) = t$.
- ^A simple algebraic characterization: $\tau : \mathcal{T}_{\Sigma} \to D$ is a Σ -homomorphism iff $\tau(t_i)=\tau(t'_i)$ implies τ $\big(f(t_1,\ldots,t_n)\big)$ $= \tau$ $\int_0^t (t')$ $\big(1^{\prime},\ldots,t_{n}^{\prime})\big)$
	- E.g., all *injective* interpretations can be expressed as homomorphic ones.
	- $\bullet~$ But derivation height functions dh_R systems R typically not (why?). Nevertheless: $_{R}$ of terminating

Homomorphic Int's (cont'd)

- A finitely branching system R is terminating if and only if a homomorphic interpretation for R into (\mathbb{N}, \geq) exists.
	- Proof: exercise
	- Hint: define an appropriate bijectionbetween \mathcal{T}_{Σ} and $\mathbb N$ that respects \rightarrow_R .
	- Remark: this even gives *recursive* functions f_τ in case sets $\rightarrow_R(t)$ can be computed, thus in particular for \emph{finite} systems $R.$

Monotone Interpretations

Using strictly monotone functions f_τ ensures that it suffices to consider (ground) instances $\ell \gamma \to r \gamma$ of rewrite rules $\ell \to r$ within homomorphic interpretations into (D,\geq_D) :

 $d >_D d'$ implies $f_\tau(\ldots, d, \dots) >_D f_\tau(\ldots, d', \dots)$

Such an interpretation is called *monotone*. Then:

- $t\rightarrow_R t'$ implies $\tau(t)>_D \tau(t')$ \longrightarrow . . . $\ell \to r$ and ground substitutions γ , $\tau(\ell \gamma) >_D \tau(r \gamma)$.) if and only if, for all rules
- Thus, R is terminating if $\boxed{\tau(\ell\gamma)} >_D \tau(r\gamma)$ for all rules $\ell \to r$ and ground substitutions $\gamma.$

Monotone Interpretations (cont'd)

- Again, monotone interpretations are "universal"
- But unlike homomorphic interpretations in general, formonotone interpretations the restriction to (\mathbb{N}, \geq) is no longer universal: An interpretation into ^a totally ordereddomain induces ^a total ordering on ground terms. But for

$$
\{g(a) \to g(b),\ f(b) \to f(a)\}
$$

this is impossible (why?).

Challenging Problems

• z086 [Zantema]

$$
{aa \to bc, bb \to ac, cc \to ab}
$$

• z001 [Zantema]

$$
{aabb \rightarrow bbbaaa}
$$

Automata theory can help . . .

Preserving Regularity

Given: A *string rewriting system R* over alphabet Σ .
The set of *deservalents of a lemma ma I* \subset ∇^* meader The set of *descendants* of a language $L \subseteq \Sigma^*$ modulo R is

$$
\rightarrow_R^*(L) = \{ y \in \Sigma^* \mid \exists x \in L : x \rightarrow_R^* y \} = R^*(L)
$$

R preserves regularity: If L is regular then \rightarrow_I^* $^*_R(L)$ is regular. R preserves context-freeness: analogously

• Aiming at syntactic criteria guaranteeing regularity preservation – despite known undecidability results.

Example [Book, Jantzen, Wrathall 1982]: $Inverse$ context-free rules: $|\text{right}$ hand side $|\leq 1$. *Monadic r*ules: Inverse context-free and length-reducing.

Deleting String Rewriting Systems

The system R is deleting if there is a precedence (irreflexive partial order) $>$ on Σ so that for each rule $\ell \rightarrow r$ in R :

 \forall letter b in $r \ni$ letter a in $\ell : a > b$

Hibbard (1974) calls the inverse system $R^-=\{r\to\ell\mid\ell\to r\text{ in }R\}$ context-li $\{r\rightarrow\ell\mid\ell\rightarrow r\text{ in }R\}$ context-limited.

- Deleting systems preserve regularity. [H, Waldmann 2003]
- Inverse deleting systems preserve context-freeness. [Hibbard 1974]

$$
R = \{ba \to cb, bd \to d, cd \to de, d \to \epsilon\}
$$

is deleting for the <mark>precedence</mark>

$$
a>b>d, \ a>c>e, \ c>d
$$

For instance,

$$
\rightarrow_R^*(ba^*d) \cap \text{NF}(R) = c^*b \cup c^*e^*
$$

where $\operatorname{NF}(R)$ denotes the set of R -normal forms.

^A Decomposition Theorem

For each deleting system R over Σ there are

- a finite substitution s from Σ to some alphabet $\Gamma\supseteq\Sigma$,
- an inverse context-free (\approx monadic) system M over Γ

so that

$$
\rightarrow_R^* = (s \circ \rightarrow_M^*)|_{\Sigma}
$$

^A Decomposition Theorem

For each deleting system R over Σ there are

- a finite substitution s from Σ to some alphabet $\Gamma\supseteq\Sigma$,
- an inverse context-free (\approx monadic) system M over Γ

so that

$$
\rightarrow_R^* = (s \circ \rightarrow_M^*)|_{\Sigma}
$$

Proof sketch: Replace $\ell_1 a \ell_2 \to r_1 y r_2$ with $\{a\rightarrow a_{1}ya_{2},\ \ell_{1}a_{1}\rightarrow r_{1},\ a_{2}\ell_{2}\rightarrow r_{2}\}$ $(a_{1},a_{2}% \rightarrow a_{1})$ new letters $_2$ (where a is $>$ -maximal $)$ $_{\rm 2}$ new letters).

Example cont'd

$$
R = \{ba \to cb, bd \to d, cd \to de, d \to e\}
$$

Example cont'd

$$
R = \{ba \to cb, bd \to d, cd \to de, d \to e\}
$$

Example cont'd

$$
R = \{ba \to cb, bd \to d, cd \to de, d \to \epsilon\}
$$

Why does the transformation terminate?Here, $(\text{base}\, N_i)_i$ is $\{a, c\} <_{\mathsf{mset}} \{c\} <_{\mathsf{mset}} \{a\} <_{\mathsf{mset}} \emptyset$.

Corollaries

$\sf{Deleting}$ systems preserve $\rm{REG}.$ Proof:

$$
R^*(L) = (s \circ M^*)|_{\Sigma}(L) = M^*(s(L)) \cap \Sigma^*.
$$

And REG is closed under finite substitution, inverse context-free rewriting, and intersection with Σ^* .

Inverse deleting systems preserve $\mathrm{CF}.$ Proof:

$$
R^{-*}(L) = (R^*)^{-}(L) = ((s \circ M^*)|_{\Sigma})^{-}(L) = s^{-}(M^{-*}(L)).
$$

And CF is closed under context-free rewritingand inverse finite substitution.

Application 1: Prefix Rewriting

For a given prefix rewriting system P define ^a (standard) rewriting system

$$
P_{\nabla} = \{ \nabla \ell \to r \mid \ell \to r \text{ in } P \}
$$

over $\Sigma\cup\{\triangledown\}.$ Note that P_\triangledown is deleting (choose $\triangledown>a\in\Sigma).$

Then

$$
\nabla^* \cdot P^*(L) = P_{\nabla}^*(\nabla^* \cdot L)
$$

for $L\subseteq \Sigma^*$, thus P^* \mathcal{A} no muloming of I . $^*(L) = \pi_\triangledown (P_\triangledown^*)$ البروان ومرومين (▽∗and regularity of L implies regularity of P^{\ast} · \cdot $L))$, $^{\ast}(L)$ [Büchi 1964].

Application 2: Monadic Rewriting

For a given monadic rewriting system M define
a rewriting system ^a rewriting system

$$
M_{\Delta} = \{ h_{\Delta}(x) \to \epsilon \mid x \to \epsilon \text{ in } M \} \cup
$$

$$
\{ h_{\Delta}(x) \mid a \to b \mid xa \to b \text{ in } M, \ a, b \in \Sigma \}
$$

over $\Sigma \cup \{\Delta\}$, where $h_{\Delta}: a \mapsto a\Delta$ for $a \in \Sigma$. مومنكم الملمر المتنازل Again, M_\vartriangle is deleting. Then

$$
M^*(L) = \pi_{\Delta}(M_{\Delta}^*(h_{\Delta}(L)))
$$

for $L\subseteq\Sigma^*$, and regularity of L implies regularity of M^* [Book, Jantzen, Wrathall 1982]. $^*(L)$

Further Applications

- Mixed prefix-, suffix-, and monadic rewriting(choose $\triangledown > \triangle > a \in \Sigma$)
- Transductions

•

. . .

• Match-bounded rewriting[Geser, H, Waldmann 2003]
Match-Heights and -Bounds

Annotate letters by natural numbers (heights). Let height in reduct $= 1 + 1$ minimum height in redex:
Fax B avex Σ define (infinite) aveters metal (B) avex For R over Σ define (infinite) system $\mathrm{match}(R)$ over $\Sigma \times \mathbb{N}$:

$$
\{\ell' \to \text{lift}_{1+m}(r) \mid
$$

$$
(\ell \to r) \in R, \text{ base}(\ell') = \ell, \ m = \min \text{height}(\ell')\}
$$

with morphisms

- height : $\Sigma \times \mathbb{N} \to \mathbb{N} : (a, h) \mapsto h$
- base : $\Sigma \times \mathbb{N} \to \Sigma : (a, h) \mapsto a$
- $\mathop{\rm lift}\nolimits_h:\Sigma\to\Sigma\times\mathbb{N}:a\mapsto (a)$ $h: \Sigma \to \Sigma \times \mathbb{N} : a \mapsto (a, h)$

 $\textsf{Example: } \text{match}(\{ab \rightarrow bc\}) \$ <u> 1989 - 대한민국의 대한민국의 대한민국의 대한민국의 대한민</u>국의 대한민국의 대한민 = $\sim L$ ${a_0b_0 \rightarrow b_1c_1, a_0b_1 \rightarrow b_1c_1,}$ the contract of the contract of the contract of $a_1b_0 \to b_1c_1, a_1b_1 \to b_2c_2, a_0b_2 \to b_1c_1, \ldots$

Match–Bounded Systems

System R is *match-bounded* for $L \subseteq \Sigma^*$ by $c \in \mathbb{N}$ if all
beights in weaked (D) demotions atoming from $\mathbb{E}(L/L)$ a heights in $\mathrm{match}(R)$ -derivations starting from lift $_0(L)$ are $\leq c.$

> $\mathrm{match}_c(R)$ = $= \text{match}(R)|_{\Sigma \times \{0,\dots,c\}}$

- Observation: $\mathrm{match}_c(R)$ is deleting. Proof: Use precedence $(x, m)>(y, n)$ iff $m < n$.
- Example: Rule $a_0b_2\rightarrow b_1c_1$ the contract of the contract of the since $a_0>b_1$ and $a_0>c_1$ $_1$ is deleting, $_0 > b_1$ 1 $_1$ and $a_0 > c_1$, since $0 < 1$.

Properties of Match-Bounded Systems

Basic observation: If R is match-bounded by c then

 R^{\ast} ⁼ lift $_0 \circ \hbox{match}$ $\,c(R)^*$ ◦ base

- If R is match-bounded (for L), then R is linearly terminating (on L).
- If R is match-bounded, then R preserves REG , and R^- preserves CF .
- "Is R match-bounded by c for $L \in \text{REG}$?" is decidable.

Match-Bounded Systems: Examples

- \bullet $Z=$ $T_{b...}$ H_b $\{a$ 2 $^2b^2$ $^2\rightarrow b^3$ Thus, the system has linear derivational complexity ${}^{\circ}a$ 3 3 } is match-bounded by $4.$ [Tahhan-Bittar].
- Peg solitaire is ^a one-person game: remove pegs from ^aboard by one peg X hopping over an adjacent peg Y
After the ben. Y is removed. Beg solitaire on a $\frac{1}{2}$. After the hop, Y is removed. Peg solitaire on a Y is removed. Peg solitaire on a one-dimensional board corresponds to

$$
P = \{ \blacksquare \square \rightarrow \square \square \blacksquare, \square \blacksquare \rightarrow \blacksquare \square \square \}
$$

The language of all positions that can be reduced to onesingle peg: $P^{-*}(\square^*\blacksquare\square^*$ $\mathsf{Regularity\ of}\ P^{-*}(\Box^*\blacksquare\Box^*$ $^*)$ $P^-\,$ is match-bounded by 2, so we obtain yet another $^\ast)$ is a "folklore theorem". proof of that result.

Related Work: Change-Bounds

For R over Σ define (infinite) system $\mathrm{change}(R)$ over $\Sigma\times\mathbb{N}$:

$$
\{\ell' \to r' \mid (\ell \to r) \in R, \text{ base}(\ell') = \ell, \text{ base}(r') = r, \text{height}(\text{successor } \ell') = \text{height}(r')\}
$$

for *length-preserving* R , where $\text{successor}(x, c) = (x, c + 1)$.

Example: change(
$$
\{ab \to bc\}
$$
) = $\{a_0b_0 \to b_1c_1, a_0b_1 \to b_1c_2,$
 $a_1b_0 \to b_2c_1, a_1b_1 \to b_2c_2, a_0b_2 \to b_1c_3, \dots\}.$

[Ravikumar 1997]: R change-bounded $\Rightarrow R$ preserves $\text{REG}.$

New proof since R change-bounded $\Rightarrow R$ match-bounded.
———————————————————— $\overline{\mathsf{Actually}}, \Leftrightarrow \mathsf{holds}.$

Inverse Deleting Systems

$$
\overline{\text{Inf}}(R^*) = \{x \mid \exists^\infty y : x \to_R^* y\}
$$

Theorem [Geser, H, Waldmann 2003] R inverse deleting $\Rightarrow \text{Inf}(R^*)$ $^\ast)$ regular (effectively).

Corollary

- R inverse deleting \Rightarrow termination of R decidable.
- R inverse match-bounded \Rightarrow termination of R decidable.

Proof: Check ${\rm Inf}(R^*)=\emptyset.$ (Note that cycles are impossible.)

Example: Z^- is match-bounded by 2 , and ${\rm Inf}(Z^*) = \emptyset.$ Thus Z is terminating.

Inverse Deleting Systems (cont'd)

Corollary

- R inverse deleting and L regular \Rightarrow termination of R on L decidable.
- R inverse match-bounded and L regular \Rightarrow termination of R on L decidable.

Proof: Check ${\rm Inf}(R^*$ $^*)\cap L=\emptyset.$

Examples

- $\bullet\,$ termination on one string: $L=$ $\{x\}$
- termination on all strings: $L = \Sigma^*$

Inverse Deleting Systems (cont'd)

The following reachability problem is decidable:

 $\rm GIVEN:$ An inverse match-bounded system $R;$ a context-free language L ; a regular language M .

QUESTION: $\exists x \in L \; \exists y \in M : x \rightarrow_I^*$ *_R y ?

Proof: Check R^{\ast} $^*(L)\cap M\not=\emptyset.$ Note: $R^*(L)$ is effectively $^\ast(L)$ is effectively context-free.

Example: The following reachability problem is decidable:

 $\rm GIVEN:$ An inverse match-bounded system R over $\Sigma;$ two strings $x,y\in\Sigma^*$.

 $\text{QUESTION: } \exists u, v \in \Sigma^*$ $^* : x \rightarrow^*_{I}$ R^* uyv \mathcal{R}

Proof: Choose $L=\,$ $\{x\}$ and $M = \Sigma^*$ $^{\ast }\{y\}\Sigma ^{\ast }$.

No Match-Bounds

Exercise

• Show that

$$
\boxed{\{ab \rightarrow ba\}}
$$

is not match-bounded.

• How many proofs can you find?

Forward-Closures and Termination

 \boldsymbol{Right} forward closures modulo R : $\operatorname{RFC}(R)$ is the least set $F\subseteq\Sigma^*$ that contains ${\rm rhs}(R)$ and is closed under

- rewriting:
	- $u\in F\wedge u\rightarrow_R v\Rightarrow v\in F$
- right extension: $u\ell_1 \in F \wedge (\ell_1\ell_2 \to r) \in R \wedge \ell_1, \ell_2 \neq \epsilon \Rightarrow ur \in F$

Example: For $R=\,$ $\{ba \rightarrow aab\}$, RFC (R) $=a$ 2∗ *b .

Theorem [Dershowitz 1981] R terminating on Σ^* iff R terminating on $\operatorname{RFC}(R)$.

Match-Bounds for Forward-Closures

$$
R_{\#} = R \cup \{\ell_1 \# \to r \mid (\ell_1 \ell_2 \to r) \in R, \ell_1, \ell_2 \neq \epsilon\}
$$

For $L = \mathop{\mathrm{rhs}}(R) \cdot \#^*$ we get

$$
\operatorname{RFC}(R)=R_{\#}^*(L)\cap\Sigma^*
$$

Theorem: $R_\#$ $-$ 11 $-$ 11 \cdots 11 \cdots 11 $#$ match-bounded for $L \Rightarrow R$ terminating on Σ^* Proof: $R\subseteq R_\#$ and $\operatorname{RFC}(R)\subseteq R_\#^*$. ${}_{\#}$ and $\operatorname{RFC}(R)\subseteq R_{\#}$ ∗ $^\ast(L).$

Remark: R linearly terminating on L , but not necessarily linearly on Σ^* (example $\{ab\rightarrow ba\}$).

Match-bound for $\mathrm{RFC}(Z)$ is $4\Rightarrow Z$ terminating.

Compatible Finite Automata

Automaton A is compatible with R over Σ and $L\subseteq \Sigma^*$ if

$$
\bullet \quad \boxed{L \subseteq \mathcal{L}(A)}
$$

• \cdot | p ℓ $\stackrel{\sim}{\rightarrow}_A q$ implies p $r\,$ $\rightarrow_A q \, |$ for states $p, \, q$ and rules $\ell \rightarrow r$

Then $\rightarrow_{\mathcal{D}}^*(L) \subset \mathcal{L}(A)$: ' $\mathcal{C}_R^*(L) \subseteq \mathcal{L}(A)$: "overapproximation"

- A (possibly infinite) rewriting system R over a (possibly infinite) alphabet is *locally terminating* if every restriction of R to a finite subalphabet is terminating.
- If some *finite* automaton is compatible with R and L , and R is locally terminating, then R is terminating on L .
- Thus, if some finite automaton is compatible with $\mathrm{match}(R)$ and $\mathrm{lift}_0(L)$, then R is terminating on $_0(L)$, then R is terminating on L .

Completion Strategies

While A is not compatible repeat: If p ℓ $\stackrel{\sim}{\to}_A q$ and not p \sim cuch that \sim r $r\,$ $\rightarrow_A q$ then add suitable transitions and states such that $p \stackrel{\prime}{\rightarrow}_A q$. $r\,$ $\rightarrow_A q$.

Implemented in Torpa, Matchbox, AProVE, TTT2.

TORPA heuristic

Matchbox heuristic

Compatibility: Example

 $\mathsf{Consider}\ R=$ $R_\# = \{aba \rightarrow abbba, a\#\rightarrow abbba, \}$ $\{aba \rightarrow abbba\}$ Then
 $abbba$ $a \# \rightarrow abbba$ a $\{aba \rightarrow abbba, a\# \rightarrow abbba, ab\# \rightarrow abbba\}$

$$
\text{match}(R_{\#}) = \{a_i b_j a_k \to a_m b_m b_m a_m \mid m = \min\{i, j, k\} + 1\} \cup
$$

$$
\{a_i \#_j \to a_m b_m b_m a_m \mid m = \min\{i, j\} + 1\} \cup
$$

$$
\{a_i b_j \#_k \to a_m b_m b_m a_m \mid m = \min\{i, j, k\} + 1\}
$$

This automaton is compatible with $\mathrm{match}(R_{\#})$ and $a_0b_0b_0b_0a_0\#$ ै, thus certifies match-boun $_{0}^{\ast}$, thus certifies match-bound 1:

Fast versus Exact

- exact approach is complete, but maybe intractable
- approx. approach is incomplete, but often successful

Fast versus Exact

- exact approach is complete, but maybe intractable
- approx. approach is incomplete, but often successful
- \bullet Good news
	- [Endrullis 2005] fast and exact decomposition
	- $\bullet\hspace{0.1cm}\leadsto\hspace{0.1cm}$ extra slides

Match-bounds for Term Rewriting

- Definition of match-heights and -bounds for TRSs isobvious, but the exact approach needs REG -preservation \rightsquigarrow a decomposition result for "deleting" TRSs.
- $\,$ Bad news: M.b.ness does not imply $\rm{REG}\textrm{-}preservation$:

 $\{g(f(x,y))\rightarrow f(g(x),g(y))\}$ on g^* ${}^*(f(a,a))$

Match-bounds for Term Rewriting

- Definition of match-heights and -bounds for TRSs isobvious, but the exact approach needs REG -preservation \rightsquigarrow a decomposition result for "deleting" TRSs.
- $\,$ Bad news: M.b.ness does not imply $\rm{REG}\textrm{-}preservation$:

 $\{g(f(x,y))\rightarrow f(g(x),g(y))\}$ on g^* ${}^*(f(a,a))$

- Alternative: Use the approximation approach to construct \mid compatible tree automata
	- (left-)linear [Geser, H, Waldmann, Zantema 2005] using non-deterministic tree automata

Match-bounds for Term Rewriting

- Definition of match-heights and -bounds for TRSs isobvious, but the exact approach needs REG -preservation \rightsquigarrow a decomposition result for "deleting" TRSs.
- $\,$ Bad news: M.b.ness does not imply $\rm{REG}\textrm{-}preservation$:

 $\{g(f(x,y))\rightarrow f(g(x),g(y))\}$ on g^* ${}^*(f(a,a))$

- Alternative: Use the approximation approach to construct \mid compatible tree automata
	- (left-)linear [Geser, H, Waldmann, Zantema 2005] using non-deterministic tree automata
	- non-linear [Korp, Middeldorp 2007] using *"quasi-deterministic"* tree automata live demo

Matrix Interpretations

Expl.: z001 as ^a test case for automated termination methods

$$
a \mapsto \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 1 \end{pmatrix} \qquad b \mapsto \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}
$$

$$
(\ell \to r) \mapsto \begin{pmatrix} 1 & 2 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 1 \\ 0 & 4 & 2 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 1 \\ 0 & 1 & 2 & 0 & 2 \\ 0 & 1 & 2 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}
$$

- This interpretation proves termination since*all* entries are ≥ 0 and *marked* entries are ≥ 1
- Found automatically / underlying theory elementary /fast verification

Ring Interpretations

Interpret the free monoid of strings in a ring:

- concatenation of factors → multiplication
- replacement of factors \mapsto subtraction

Ring Interpretations

Interpret the free monoid of strings in a ring:

- concatenation of factors → multiplication
- replacement of factors \mapsto subtraction

For termination: Use an (infinite) ordered ring, which is <mark>well-founded</mark> (on its "positive cone").

• Expl: $(\mathbb{Z}, 0, 1, +, \cdot)$ works for $\{aab \rightarrow ba\}$,
but doesn't work for $\{ab \rightarrow ba\}$ but doesn't work for $\{ab \rightarrow ba\}$ as multiplication is commutative.

 \leadsto Use a $\boxed{\mathsf{non-commutative\ ring}}$, e.g., a $\boxed{\mathsf{matrix\ ring}}$

Well-founded Rings

A partially ordered ring $(D,0,1, +, \cdot, \geq)$:

- \bullet $(D,0,+)$ an Abelian group, $(D,1, \cdot)$ a monoid.
- Multiplication distributes over addition from both sides. (Multiplication not necessarily commutative / invertible.)
- $\bullet\,\geq$ is a compatible partial order:

$$
a \ge b \Rightarrow a + c \ge b + c
$$

$$
a \ge b \land c \ge 0 \Rightarrow a \cdot c \ge b \cdot c \land c \cdot a \ge c \cdot b
$$

 \blacksquare Its positive cone: N its *strictly positive cone*: $P = N \setminus \{0\} = \{d \in D \mid d > 1\}$ = ${d \in D \mid d \ge 0},$ The ring is *well-founded* if $>$ is well-founded on N . $=N \setminus \{0\}$ = ${d \in D \mid d > 0}$.

- Note: The order is uniquely determined by these cones: $a \geq b$ iff $a - b \in N$ and $a > b$ iff $a - b \in P$.
- Note: $N \cdot N \subseteq N$, but $P \cdot P \not\subseteq P$ if zero divisors exist.

- A ring interpretation of alphabet Σ is a mapping $i: \Sigma \rightarrow D$
	- extended to a mapping $i : \Sigma^* \to D$ on strings b $^* \rightarrow D$ on strings by

$$
i(s_1 \cdot \ldots \cdot s_n) = i(s_1) \cdot \ldots \cdot i(s_n)
$$

• extended to a mapping $i : \Sigma^*$ $^* \times \Sigma^*$ $^* \rightarrow D$ on rules by

$$
i(\ell \to r) = i(\ell) - i(r)
$$

Apply ring interpretations for proving termination: Ensure $i(x\ell y) > i(xry)$ for each step $x\ell y \to_R$ R xry , i.e.,

$$
i(x\ell y) - i(xry) = i(x)i(\ell)i(y) - i(x)i(r)i(y)
$$

$$
= \boxed{i(x)\left(i(\ell) - i(r)\right)i(y) \in P} \qquad (*)
$$

Given the set of interpretations of letters $i(\Sigma) = A$, what is the set of admissible interpretations of rules $i(R) = B$?

Apply ring interpretations for proving termination: Ensure $i(x\ell y) > i(xry)$ for each step $x\ell y \to_R$ R xry , i.e.,

$$
i(x\ell y) - i(xry) = i(x)i(\ell)i(y) - i(x)i(r)i(y)
$$

$$
= \boxed{i(x)\left(i(\ell) - i(r)\right)i(y) \in P} \qquad (*)
$$

Given the set of interpretations of letters $i(\Sigma) = A$, what is the set of admissible interpretations of rules $i(R) = B$? From $(*)$ it is obvious that $A^*BA^*\subseteq P$ is necessary The largest such set B is $^{\ast}BA^{\ast}$ $^* \subseteq P$ is necessary.

$$
\operatorname{core}(A) = \{ d \in D \mid A^* dA^* \subseteq P \}
$$

Example: For $A=\,$ $\{(\begin{smallmatrix} 1 & 0 \\ 0 & 0 \end{smallmatrix})\}$ we get $\mathrm{core}(A) = \{d \mid d \geq (\begin{smallmatrix} 1 & 0 \\ 0 & 0 \end{smallmatrix})\}.$

• Increasing the range of interpretations of letters typically reduces the set that can safely be chosen as interpretations of rules:

If
$$
A_1 \subseteq A_2
$$
, then $\text{core}(A_1) \supseteq \text{core}(A_2)$

• The range of all interpretations is upward closed: W.l.o.g. for the interpretation of <mark>letters</mark> by

 $\mathrm{core}(A+N)=\mathrm{core}(A)$

and for the interpretation of <mark>rules</mark> by

$$
\overline{\text{core}(A) + N} = \text{core}(A)
$$

Let R be a string rewriting system over Σ . An interpretation $i : \Sigma \rightarrow N$ into a p.o.-ring is
arder presenting order preserving

• from (Σ^*) (\ast, \rightarrow_R) to $(D,>)$ iff $i(R) \subseteq \mathrm{core}(i(\Sigma))$

Definition: Let A be a subset of the positive cone of a well-
Consider the Γ of Γ and Γ is the constability for D : founded ring. Then $i : \Sigma \to A$ is an A -interpretation for R if

 $i(R) \subseteq \mathrm{core}(A)$

Theorem:

 $\bullet\,$ If there is an A -interpretation for $R,$ then R is terminating.

Let R , S be string rewriting systems over Σ . An interpretation $i : \Sigma \rightarrow N$ into a p.o.-ring is
arder presenting order preserving

- from (Σ^*) (\ast, \rightarrow_R) to $(D,>)$ iff $i(R) \subseteq \mathrm{core}(i(\Sigma))$
- from $(\Sigma^*, \rightarrow_S)$ to (D, \geq) iff $i(A)$,[→]S) to(D,≥) iffi(S)⊆N

Definition: Let A be a subset of the positive cone of a well-
Consider the Γ of Γ of Γ of A is an A intermetation for D : founded ring. Then $i : \Sigma \to A$ is an A -interpretation for R if

 $i(R) \subseteq \mathrm{core}(A)$

Theorem:

• If there is an A-interpretation i for R with $i(S) \subseteq N$,
then R is terminating relative to G then R is terminating relative to $S.$

Matrix Interpretations

Consider the p.o. ring of square matricesof a fixed dimension n over the integers: $\underline{D}=\mathbb{Z}^n$

- Addition \neq multiplication as usual.
- \bullet $\,$ $\,0$ and $\,1$ are the zero and the identity matrix resp.
- The order is defined component-wise: $d\geq e\,$ if $\,\forall i,j: d_{i,j}\geq e_{i,j}.$
- $\bullet~$ The positive cone is $N=\mathbb{N}^n$ $^{\times n}$, and $P=N \setminus \{0\}$.
- The p.o. is well-founded on the positive cone.
- For $n>1$, the p.o. is not total.

In order to apply the previous theorem we needa set of matrices $A\subseteq N$ with $\boxed{\mathsf{non-empty\;core}(A)}.$

 $\times n$

Matrix Classes

Two particular instances of the above method:

- Choose $A = M_I$ with $\text{core}(A) = M_I$.
- Choose $A=E_I$ with $\mathrm{core}(A)$ = ν_I with $\text{core}(A) = P_I$.

All these are simple "syntactically" defined subsets of N , parameterized by a set of matrix indices $I\subseteq \{1,\ldots,n\}$:

$$
M_I = \{ d \in N \mid \forall i \in I \exists j \in I : d_{i,j} > 0 \}
$$

$$
E_I = M_I \cap M_I^{\mathrm{T}}
$$

$$
P_I = \{ d \in N \mid \exists i \in I \exists j \in I : d_{i,j} > 0 \}
$$

Consider only entries $d_{i,j}$ with $i,j\in I$:

- \bullet M_I : no zero row
- \bullet E_I η_I : no zero row, no zero column

Example: $\{aa$ $a \rightarrow$ $\rightarrow aba$ } / {b $\rightarrow bb$ } $i(a) = \left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array}\right) \qquad i(b) = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right)$

is an E_1 -interpretation with $i(aa\rightarrow$ \Rightarrow aba) = i(aa) - i(aba) = ($\begin{smallmatrix} 2 & 1 \\ 1 & 1 \end{smallmatrix}$) - ($\begin{smallmatrix} 1 & 1 \\ 1 & 1 \end{smallmatrix}$) = ($\begin{smallmatrix} 1 & 0 \\ 0 & 0 \end{smallmatrix}$) $\in P_1$
i(b) \Rightarrow i(b) \Rightarrow i(b) \Rightarrow 0 $\subset N$ and $i(b \rightarrow bb) = i(b) - i(bb) = 0 \in N$.

Alternatively, use the $M_2\hbox{-}\mathrm{interpretation}$

$$
i(a) = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \qquad i(b) = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}
$$

with $i(aa \rightarrow aba) = (\begin{smallmatrix} 2 & 1 \ 1 & 1 \end{smallmatrix}) - (\begin{smallmatrix} 2 & 0 \ 1 & 0 \end{smallmatrix}) = (\begin{smallmatrix} 0 & 1 \ 0 & 1 \end{smallmatrix}) \in M_2$ and
i(by , bb) = 0. (This interpretation is not E, for any $i(b \rightarrow$ $b\rightarrow bb$) = 0. (This interpretation is not E_I for any I .)

Example: $\{aabb \rightarrow$ $\rightarrow bbbaaa$ }

$$
a \mapsto \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \qquad b \mapsto \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 2 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}
$$

$$
(\ell \to r) \mapsto \begin{pmatrix} 1 & 2 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 1 \\ 0 & 4 & 2 & 0 & 2 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 1 \\ 0 & 2 & 0 & 0 & 1 \\ 0 & 1 & 2 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 \end{pmatrix}
$$

This is an $E_{\{1,5\}}$ -interpretation.

Example: Linear Interpretations

• All termination proofs by $\fbox{additive}$ natural weights can be expressed as matrix interpretations: $(\mathbb{N}, +)$ is isomorphic to $(\{(\frac{1}{0})$ $\, n \,$ $\left[\begin{smallmatrix} 1 & n \ 0 & 1 \end{smallmatrix}\right] \mid n\in\mathbb{N}\},\,\cdot\,)$ since

$$
\left(\begin{smallmatrix} 1 & m \\ 0 & 1 \end{smallmatrix}\right) \cdot \left(\begin{smallmatrix} 1 & n \\ 0 & 1 \end{smallmatrix}\right) = \left(\begin{smallmatrix} 1 & m+n \\ 0 & 1 \end{smallmatrix}\right)
$$

- More general: Linear interpretations
	- \bullet Interpret letters by functions $\lambda n. a n + b$ on $\mathbb N$ with $a,b\in\mathbb N$ and $a\geq 1$,
	- concatenation is interpreted by function composition,
	- proof obligation is $\forall n : i(\ell)(n) > i(r)(n)$.

This corresponds to matrix interpretations with matrices of the form $\left(\begin{smallmatrix} a & b \ 0 & 1 \end{smallmatrix}\right)$

A Normal Form for E_I I -Proofs

Matrix interpretations are invariant under permutations:

- $\bullet\;$ If i is an E_I or M_I -interpretation for $R,$
- and if π is a permutation on the index set $\{1,\ldots,n\}$,
- $\bullet\,$ then there is also an $E_{\pi(I)^-}$ / $M_{\pi(I)}$ -interpretation for $R.$
A Normal Form for E_I I -Proofs

Matrix interpretations are invariant under permutations:

- $\bullet\;$ If i is an E_I or M_I -interpretation for $R,$
- and if π is a permutation on the index set $\{1,\ldots,n\}$,
- $\bullet\,$ then there is also an $E_{\pi(I)^-}$ / $M_{\pi(I)}$ -interpretation for $R.$
- \Rightarrow W.l.o.g. we can replace an arbitrary set I by $\{1, \ldots, |I|\}$.

A Normal Form for E_I I -Proofs

Matrix interpretations are invariant under permutations:

- $\bullet\;$ If i is an E_I or M_I -interpretation for $R,$
- and if π is a permutation on the index set $\{1,\ldots,n\}$,
- $\bullet\,$ then there is also an $E_{\pi(I)^-}$ / $M_{\pi(I)}$ -interpretation for $R.$
- \Rightarrow W.l.o.g. we can replace an arbitrary set I by $\{1, \ldots, |I|\}$.
- \Rightarrow A normal form: Choose $J=$ $\{1,n\}.$
	- A proof of $\mathrm{SN}(R/S)$ via some E_I can be replaced by a sequence of $E_J\text{-}{\rm intercept}$ I_I -interpretation which successively remove the same rules. J -interpretations

Implementations: Performance

Percentage of YES in the ²⁰⁰⁶ SRS competition:

- \bullet MultumNonMulta (H) 51 $\%$ matrix interpretations only
- \bullet Matchbox/Satelite (Waldmann) 68 $\%$ labelling, matrices, RFC match-bounds
- $\,$ TORPA (Zantema) 75 $\%$ various techniques, including 3×3 matrices
- Jambox (Endrullis) 94 $\%$ \approx Matchbox $+$ dependency pairs

(2007 competition of partial significance . . .)

Implementations: TORPA

Random guesses or complete enumeration, using matrix shape

$$
\begin{pmatrix} 0 & * & + \\ 0 & * & * \\ 0 & 0 & 0 \end{pmatrix} \subseteq \text{core} \begin{pmatrix} 1 & * & * \\ 0 & * & * \\ 0 & 0 & 1 \end{pmatrix}
$$

with $*\in\{0,1,4\}$. Occurs in 36% of its proofs, e.g. z007:

TORPA 1.6 is applied to

\n\n- a b
$$
\rightarrow
$$
 b a, b a \rightarrow a a c b,
\n- [A] Choose interpretation in NxN,
\n- order: $(x, y) > (x', y') \iff x > x' \& y >= y'$
\n- a : lambda (x, y) . $(x+y, 4y)$
\n- b : lambda (x, y) . $(x, 4y+1)$
\n- c : lambda (x, y) . $(x, 0)$
\n- remove: a b \rightarrow b a
\n

Implementations: MultumNonMulta

- Random guesses, random restart hill climbing; complete enumeration, ... (not in the competition version)
- Backward completion, see below \rightsquigarrow live demo
	- Examples: z061 $/$ z062 $/$ \ldots
	- $\bullet~$ Example: Waldmann/r 10

$$
SN({ba2b \to a4, ab2a \to b4}/{b \to b3})
$$

Sparse 14×14 matrices (250 sec '06 $/$ 10 sec '07)

- Determine additive weights using the GNU Linear Programming Kit.
	- $\bullet~$ Example: z 112 $/$ $\ldots~$

Implementations: SAT Solving

- Fix dimension, say 5 \leadsto $|$ Constraint system
	- $|\Sigma| \cdot d^2$ unknowns (matrix entries) and
	- $|R| \cdot d^2$ constraints (entries in differences).
- Fix maximal value for entries, say $7 = 2^3$ $^{\rm 5}-1\,$ \rightsquigarrow Finite domain constraint system
	- $\bullet\,$ Binary encoding of entries \leadsto boolean SAT problem: e.g. 15.000 variables, 90.000 clauses, 300.000 literals
	- Solve by SAT solver, e.g. SatELiteGTI. Expl: z001 takes ⁷ seconds
- Jambox: Linear programming $+$ SAT solving.
- Matchbox: Likewise, but using only one bit per entry: Computation in $\{0,1\}\subset\mathbb{N}$, so $1+1$ is "forbidden".

Limitation: Derivational complexity

In a product of k matrices from a finite set, entries are bounded by an exponential function in $k.$ Assume R has derivational complexity above exponential.

Limitation: Derivational complexity

In a product of k matrices from a finite set, entries are bounded by an exponential function in $k.$ Assume R has derivational complexity above exponential.

- ⇒ There can be no strict matrix interpretation for R.
Expl: $\{ah \rightarrow baa, ch \rightarrow bbc\}$ Expl: $\{ab \rightarrow baa, cb \rightarrow bbc\}$
	- Derivational complexity doubly exponential.
	- But: "Relative" matrix proof with step-wise removal of rules is possible (first remove $c b \to$ $\rightarrow bbc$).

Limitation: Derivational complexity

In a product of k matrices from a finite set, entries are bounded by an exponential function in $k.$ Assume R has derivational complexity above exponential.

- ⇒ There can be no strict matrix interpretation for R.
Expl: $\{ah \rightarrow baa, ch \rightarrow bbc\}$ Expl: $\{ab \rightarrow baa, cb \rightarrow bbc\}$
	- Derivational complexity doubly exponential.
	- But: "Relative" matrix proof with step-wise removal of rules is possible (first remove $c b \to$ $\rightarrow bbc$.
- \Rightarrow There can be no matrix interpretation at all for R
if each rule occurs "equally often" if each rule occurs "equally often". $\textsf{Expl: } \{ab \rightarrow bca, cb \rightarrow bbc\}$ (z018, z020)
	- Derivational complexity tower of exponentials.
	- $\bullet\,$ But: Terminating via DP $+$ matrix interpretations
	- (and RPO-terminating).

Limitation: Dimension restrictions

A matrix ring is not *free*: Certain polynomial identities hold.

• Dimension 1: $[A, B] = 0$

where $\left[A,B\right] =AB$ BA (commutator) \Rightarrow No 1-dim termination proof for $\{ab \rightarrow ba\}$.

Limitation: Dimension restrictions

A matrix ring is not *free*: Certain polynomial identities hold.

• Dimension 1: $[A, B] = 0$

where $\left[A,B\right] =AB$ BA (commutator) \Rightarrow No 1-dim termination proof for ${ab \rightarrow ba}$.

• Dimension 2: $[[A, B]^2, C] = 0$ ⇒ No 2-dim termination proof for
Labebe → ebeba_acheb → bebea_becba → $\{abcbc \rightarrow cbcba, acbcb \rightarrow bcbca, bccba \rightarrow abccb, cbbca \rightarrow acbbc\}$
(Le BEC match bounded Matrix proof not known) (Is RFC match-bounded. Matrix proof not known.)

Similar identities hold for matrix rings of any dimension.

Limitation: Dimension restrictions

A matrix ring is not *free*: Certain polynomial identities hold.

• Dimension 1: $[A, B] = 0$

where $\left[A,B\right] =AB$ BA (commutator) \Rightarrow No 1-dim termination proof for ${ab \rightarrow ba}$.

• Dimension 2: $[[A, B]^2, C] = 0$ ⇒ No 2-dim termination proof for
Labebe → ebeba_acheb → bebea_becba → $\{abcbc \rightarrow cbcba, acbcb \rightarrow bcbca, bccba \rightarrow abccb, cbbca \rightarrow acbbc\}$
(Le BEC match bounded Matrix proof not known) (Is RFC match-bounded. Matrix proof not known.)

Similar identities hold for matrix rings of any dimension.

Define SRS hierarchy by "minimal matrix proof dimension":

• Is every level inhabited? Which levels are decidable? [Gebhardt, Waldmann 2008]

Proof Verification

- Although probably hard to find, ^a termination proof viamatrix interpretations is easy to verify $\ \dots$
- . . . and verification is fast: PTIME

Proof Verification

- Although probably hard to find, ^a termination proof viamatrix interpretations is easy to verify $\ \dots$
- . . . and verification is fast: PTIME
- Even if the matrix type is not "syntactically" specified:
	- It is decidable whether an arbitrary matrixinterpretation i satisfies $i(R) \subseteq \operatorname{core}(i(\Sigma)).$
	- Even more: we can effectively determine ^a finite set $C \subseteq P$ such that $\mathrm{core}(i(\Sigma)) = \{d \geq c \mid c \in C\}.$

Weighted Automata

Transitions have ^a natural number as weight:

A weighted automaton "is" a mapping $Q \times \Sigma \times Q \rightarrow \mathbb{N}$.

This mapping is extended to $Q\times \Sigma^*$ $^* \times Q \rightarrow \mathbb{N}$.

- multiply weights along ^a single path,
- add weights of different paths.

Weighted Automata

Transitions have ^a natural number as weight:

A weighted automaton "is" a mapping $Q \times \Sigma \times Q \rightarrow \mathbb{N}$.

This mapping is extended to $Q\times \Sigma^*$ $^* \times Q \rightarrow \mathbb{N}$.

- multiply weights along ^a single path,
- add weights of different paths.

W l.o.g. Q = $\{1,\ldots,n\}.$

For a transition from state p to state q with weight n for letter a , the following representations are equivalent:

• State diagram:

$$
\widehat{p} \xrightarrow{a:n} \widehat{q}
$$

 $=n$

 \bullet Matrix interpretation: $i(a)_{p,q}$

Weighted Automata (cont'd)

• Matrix multiplication computes the transitive closure:

For $x\in\Sigma^*$, the $|$ weight of path (p) \boldsymbol{x} $\,q\,$ $q)$ is $\displaystyle{i(x)_{p,q}}$

Weighted Automata (cont'd)

• Matrix multiplication computes the transitive closure:

For $x\in\Sigma^*$, the $\big\vert$ weight of path $\textcircled{p} \frac{x}{\cdot}$ q isi(x)p,q

• "Standard" automata: $Q \times \Sigma \times Q \rightarrow \{0,1\}$.

• Other (semi-)rings possible . . .

Zantema's System (cont'd)

The above matrix interpretation:

$$
a \mapsto \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \qquad b \mapsto \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 2 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}
$$

$$
(\ell \to r) \mapsto \begin{pmatrix} 1 & 2 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 1 \\ 0 & 4 & 2 & 0 & 2 \\ 0 & 0 & 0 & 1 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 0 & 2 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}
$$

proves termination since

- *all* entries are ≥ 0 and
- marked entries are ≥ 1

Zantema's System (cont'd)

The same termination proof as ^a weighted automaton:

Example: {
$$
aa \rightarrow bc
$$
, $bb \rightarrow ac$, $cc \rightarrow ab$ }

Solution for RTA List of Open Problems $\#104$:

A variant was published as a *monotone algebra* in IPL'06.

• Example: $\{bbc}$ $\rightarrow abbcbca\}$ (z061)

• Example: $\{bbc}$ $\rightarrow abbcbca\}$ (z061)

Σ:11b:12b:13c:14a:15b:16c:17Σ:1

Done.

• Example: $\{bbc}$ $\rightarrow abbcbca\}$ (z061)

Σ:11b:12b:13c:14a:15b:16c:17Σ:1

Done.

• Example: ${bcabbc \rightarrow abcbbca}$ (z062)

Σ:11b:12c:13a:14b:15b:16c:17 Σ:1 No: weight 1 bcabbc 4 ⁼ ⁰ ¹ ⁼ weight 1 abcbbca 4

• Example: $\{bbc}$ $\rightarrow abbcbca\}$ (z061)

$$
\Sigma: 1\left(\left(\begin{matrix}1\\1\end{matrix}\right)\xrightarrow{b:1}\left(\begin{matrix}2\end{matrix}\right)\xrightarrow{b:1}\left(\begin{matrix}3\end{matrix}\right)\xrightarrow{c:1}\left(\begin{matrix}4\end{matrix}\right)\xrightarrow{a:1}\left(\begin{matrix}5\end{matrix}\right)\xrightarrow{b:1}\left(\begin{matrix}6\end{matrix}\right)\xrightarrow{c:1}\left(\begin{matrix}7\end{matrix}\right)\Sigma:1\xrightarrow{c:1}\left(\begin{matrix}6\end{matrix}\right)\xrightarrow{c:1}\left(\begin{matrix}7\end{matrix
$$

Done.

• Example: ${bcabbc \rightarrow abcbbca}$ (z062)

Done: weight
$$
(0, b \neq 0)
$$
 = 1 = weight $(0, b \neq 0)$

Matrix Int's for Term Rewriting

Linear combinations of matrix interpretations[Endrullis, Waldmann, Zantema 2006]

- monotone algebra framework
- $\bullet\,$ vectors as domain: \mathbb{N}^n
- interpretations of the form

$$
f_{\tau}(\vec{v_1},\ldots,\vec{v_n}) = M_1\vec{v_1} + \cdots + M_n\vec{v_n} + \vec{v}
$$

where
$$
M_i \in \mathbb{N}^{n \times n}
$$
 with $\boxed{(M_i)_{1,1} > 0}$ and $\vec{v} \in \mathbb{N}^n$

Matrix Int's for Terms (cont'd)

Dependency pairs [Arts, Giesl 2000]

 $\mathrm{SN}(R)$ iff $\mathrm{SN}(\mathrm{DP}(R)_{\mathrm{top}}/R)$

- $\bullet~$ The matrix method supports relative termination \Rightarrow it supports this basic version of the DP method
- $\bullet~$ Marker symbols encode the idea that $\operatorname{DP}(R)$ steps only happen at the left end (for terms: top position). [Endrullis, Waldmann, Zantema 2006]: the matrixmethod can be adapted to relative top-termination
- and can be combined with refinements [Hirokawa, Middeldorp 2004]

Problems

- Further instances of the genera^l scheme are conceivable: Other matrix classes?
- Explain the relationship between proofsvia E_I and via M_I .
- Explain the relationship between proofsvia M_I and via $M_{I'}$ for $I \neq I'$.
- A normal form for M_I -proofs?
- Good heuristics for backward completion

Grand Unified Theory

- Matrix interpretations are weighted finite automata.
- The method of (RFC) match-bounds also builds onweighted (annotated) automata.

 $\overline{\mathsf{United~view}}\leadsto \left[\mathsf{Waldmann}\right.$ work in progress]

- Natural semi-ring $(\mathbb{N}, +, \cdot, 0, 1)$
- $\bullet\;$ Boolean semi-ring $(\{0,1\}, +, \cdot, 0, 1)$
- Tropical semi-ring $(N \cup {\infty}, min, +, \infty, 0)$ [W '08, unpublished]: subsumes match-boundedness
- Arctic semi-ring ($\mathbb{N} \cup \{-\infty\}$, $\max, +, -\infty, 0$) [W '07]: subsumes *quasi-periodic interpretations* by [W, Zantema '07]
- ... below zero ($\mathbb{Z} \cup \{-\infty\}$, $\max, +, -\infty, 0$) [Koprowski, ^W '08]

Derivational Complexity

Research program

- Deduce upper/lower bounds on derivation lengths fromtermination proofs.
- Characterize complexity classes via termination proof methods.

The *derivation height* of term t modulo system R is

$$
dh_R(t) = \max\{n \mid \exists s : t \to_R^n s\}
$$

The *derivational complexity* of R is

 $dc_R(n) = \max\{\dh_R(t) | \text{ size}(t) \leq n\}$

- exercise: show $\text{d}c$ $R(n+1) \geq dc$ $_R(n)$
- exercise: show $\text{dc}_R(n) \in \Omega(n)$ for $R_R(n)\in \Omega(n)$ for non-trivial R

$1. \ \ R =$ ${aa \rightarrow aba}$, $dc_R \in \Theta(n)$

- $1. \ \ R =$ ${aa \rightarrow aba}, \, \text{dc}_R \in \Theta(n)$
- 2. $R=$ $\{ab \rightarrow ba\}$, dc_R $\in \Theta(n)$ 2 $^{2})$

- $1. \ \ R =$ ${aa \rightarrow aba}, \, \text{dc}_R \in \Theta(n)$
- 2. $R=$ $\{ab \rightarrow ba\}$, dc_R $\in \Theta(n)$ 2 $^{2})$
- 3. $R=$ $\{ab \rightarrow baa\}$, $\text{dc}_R \in \Theta(2^n)$ $\left(\begin{matrix} 0 \ 0 \end{matrix} \right)$

- $1. \ \ R =$ ${aa \rightarrow aba}, \, \text{dc}_R \in \Theta(n)$
- 2. $R=$ $\{ab \rightarrow ba\}$, dc_R $\in \Theta(n)$ 2 $^{2})$
- 3. $R=$ ${ab \rightarrow baa}$, dc_R $\in \Theta(2^n)$ $\left(\begin{matrix} 0 \ 0 \end{matrix} \right)$
- 4. $R=$ ${aabab \to aPb, aP \to PAa, aA \to Aa,}$
 $bP \to bO$ $\Omega A \to aO$ $\Omega a \to babaab$ $bP \rightarrow bQ, QA \rightarrow aQ, Qa \rightarrow babaa\}$ dc_R not primitive recursive (Ackermann) $_R$ not primitive recursive (Ackermann)

- $1. \ \ R =$ ${aa \rightarrow aba}, \, \text{dc}_R \in \Theta(n)$
- 2. $R=$ $\{ab \rightarrow ba\}$, dc_R $\in \Theta(n)$ 2 $^{2})$
- 3. $R=$ ${ab \rightarrow baa}$, dc_R $\in \Theta(2^n)$ $\left(\begin{matrix} 0 \ 0 \end{matrix} \right)$
- 4. $R=$ ${aabab \to aPb, aP \to PAa, aA \to Aa,}$
 $bP \to bO$ $\Omega A \to aO$ $\Omega a \to babaab$ $bP \rightarrow bQ, QA \rightarrow aQ, Qa \rightarrow babaa\}$ dc_R not primitive recursive (Ackermann) $_R$ not primitive recursive (Ackermann)
- 5. Etc. (string rewriting is computationally complete)

- $1. \ \ R =$ ${aa \rightarrow aba}, \, \text{dc}_R \in \Theta(n)$
- 2. $R=$ $\{ab \rightarrow ba\}$, dc_R $\in \Theta(n)$ 2 $^{2})$
- 3. $R=$ ${ab \rightarrow baa}$, dc_R $\in \Theta(2^n)$ $\left(\begin{matrix} 0 \ 0 \end{matrix} \right)$
- 4. $R=$ ${aabab \to aPb, aP \to PAa, aA \to Aa,}$
 $bP \to bO$ $\Omega A \to aO$ $\Omega a \to babaab$ $bP \rightarrow bQ, QA \rightarrow aQ, Qa \rightarrow babaa\}$ dc_R not primitive recursive (Ackermann) $_R$ not primitive recursive (Ackermann)
- 5. Etc. (string rewriting is computationally complete)

We can deduce some of these bounds automatically:

- 1. via match bounds
- 2. via upper triangular 3×3 matrix interpretations
- 3. via matrix interpretations
Some Results for Term Rewriting

- $\bullet\,$ polynomial interpretations \leadsto doubly exponential [Lautemann $\hspace{0.1 cm}/\hspace{0.1 cm}$ Geupel $\hspace{0.1 cm}/\hspace{0.1 cm}$ H $\hspace{0.1 cm}/\hspace{0.1 cm}$ Zantema $\hspace{0.1 cm}/\hspace{0.1 cm} \ldots$]
- multiset path orders \leadsto primitive recursive [H]
- lexicographic path orders \leadsto multiple recursive [Weiermann]
- Knuth-Bendix orders \leadsto multiple recursive (2-rec) [H, Lautemann $\hspace{0.1 cm}/\hspace{0.1 cm}$ Touzet $\hspace{0.1 cm}/\hspace{0.1 cm}$ Lepper $\hspace{0.1 cm}/\hspace{0.1 cm}$ Bonfante $\hspace{0.1 cm}/\hspace{0.1 cm}$ Moser]
- Related [Buchholz $/$ Touzet $/$ Weiermann $/$ Moser \ldots]
- match bounds \leadsto linear [Geser, H, Waldmann]
- $\bullet\,$ matrix interpretations \leadsto exponential [H, Waldmann], polynomial in particular cases [Waldmann]
- context-dependent interpretations \rightsquigarrow see below [H]

Research Problem

Challenge: *Small* complexity classes. Here, upper bound results heavily overestimate dc_R .

Some remedies:

- Syntactic restrictions of standard path orders
	- light multiset path order LMPO [Marion 2003]
	- polynomial path order POP∗: innermost derivations on constructor-based terms [Avanzini, Moser 2008], cf. [Bellantoni, Cook 1992]
- Matrix interpretations of particular shape[Waldmann 2007]
- Context-dependent interpretations[H ²⁰⁰¹ / Schnabl, Moser 2008]

Interpretations and Derivation Lengths

For an interpretation τ for R into a Σ -algebra over $\mathbb N,$ $s\rightarrow_R t$ implies $\tau(s)>\tau(t)$. Thus, for $t\in\mathcal{T}_{\Sigma}$,

 ${\rm dh}_R(t)\leq \tau(t)$

 $\bullet\,$ Main Lemma. Let τ be a monotone interpretation for R $p: \mathbb{N} \to \mathbb{N}$ be strictly monotone such into (\mathbb{N}, \geq) and let $p: \mathbb{N} \to \mathbb{N}$ be strictly monotone such at for all $f \in \Sigma$ and $k \in$ that for all $f \in \Sigma$ and $k \in \mathbb{N}$, $p(k) \ge f_{\tau}(k, \ldots, k)$. Then

> $dh_R(t) \leq p^{\text{depth}(t)}(0)$ $dc_R(n) \leq p^n(0)$

• Proof: exercise (hints: induction on t ; $\mathrm{depth}(t) \leq \mathrm{size}(t)$)

Corollaries

- 1. If p is a linear function, then $\text{dc}_R(n) \in 2^{O(n)}.$
- 2. If p is a polynomial, then $\text{dc}_R(n) \in 2^{2^{O(n)}}$.
- 3. If p is an exponential function, then $\text{dc}_{R}(n) \in E_{4}$.
- 4. If $p \in E_k$, then $\text{dc}_R(n) \in E_{k+1}$, for $k \geq 2$.
- Here, E_{k} denotes the $k\text{-th}$ level of the Grzegorczyk hierarchy.

Remark: 2. and 3. are special cases of 4.

Consider the (length preserving) system FIB

$$
{aab \to bba, b \to a}
$$

Consider the (length preserving) system FIB

 ${aab \rightarrow bba, b \rightarrow a}$

• exponential lower bound: $b^n \rightarrow^k b^{n-1}a$ where $k \geq \operatorname{fib}(n)$ (Fibonacci number)

$$
b^n \rightarrow^{\geq \text{fib}(n-1)} b^{n-2}ab \rightarrow^{\geq \text{fib}(n-2)} b^{n-3}aab \rightarrow b^{n-3}bba = b^{n-1}a
$$

Consider the (length preserving) system FIB

 ${aab \rightarrow bba, b \rightarrow a}$

• exponential lower bound: $b^n \rightarrow^k b^{n-1}a$ where $k \geq \operatorname{fib}(n)$ (Fibonacci number)

$$
b^n \rightarrow^{\geq \text{fib}(n-1)} b^{n-2}ab \rightarrow^{\geq \text{fib}(n-2)} b^{n-3}aab \rightarrow b^{n-3}bba = b^{n-1}a
$$

• termination proof by linear functions:

$$
\tau: a \mapsto \lambda n. 2n, \ b \mapsto \lambda n. 2n + 1
$$

thus $\tau(aabw) = 8\tau(w) + 4 > 8\tau(w) + 3 = \tau(bbaw)$, which implies ^a single exponential upper boundby the main lemma: choose $p=\tau(b)$

Consider the system CNF

$$
\neg(x \land y) \to \neg(x) \lor \neg(y)
$$

$$
\neg(x \lor y) \to \neg(x) \land \neg(y)
$$

$$
x \lor (y \land z) \to (x \lor y) \land (x \lor z)
$$

$$
(x \land y) \lor z \to (x \lor z) \land (y \lor z)
$$

- CNF allows derivation heights not bounded by any elementary function (exercise), thus by the above corollary no *polynomial interpretation* can prove termination, as conjectured by Dershowitz.
- Termination *can* be proven using exponential functions, however (exercise).

Embedding Relations

From homeomorphic embedding to path orderings . . .

• Define the rewriting system HE as

$$
f(x_1,\ldots,x_n)\to x_i
$$

The *homeomorphic embedding r*elation is $>_{\sf HE} = \rightarrow_{\sf H}^+$ HE.

• For a given *precedence* $>$ (well-founded ordering on Σ), define the rewriting system HP as

$$
f(x_1,\ldots,x_n)\to c_{
$$

where $c_{< f}$ denotes any context with symbols $\ < f.$ $>_{\mathsf{HP}}= \rightarrow_{\mathsf{H}}^+$ cede HP p_{P} is the *homeomorphic embedding with* precedence.

Embedding Relations (cont'd)

• For a given *precedence* $>$ the rewriting system PE is

$$
f(x_1, \ldots, x_n) \to c_{\lt f}[x_1, \ldots, x_n]
$$

$$
f(x_1, \ldots, g(y_1, \ldots, y_m), \ldots, x_n) \to
$$

$$
c_{\lt f}[f(x_1, \ldots, y_1, \ldots, x_n), \ldots, f(x_1, \ldots, y_m, \ldots, x_n)]
$$

 $>_{\mathsf{PE}}= \rightarrow_{\mathsf{p}}^+$ PE I_{E} is called *primitive embedding*.

- $\bullet\;$ similarly: generalized embedding
- multiset path order
- lexicographic/recursive path order

Embedding Relations (cont'd)

Via the Key Lemma:

- *homeomorphic embedding* implies linear upper bound on \rm{dc} $\, R$
- *homeo. embedding with precedence* implies $\boldsymbol{\mathsf{single}}$ exponential upper bound on dc $\, R \,$
- primitive / generalized embedding / mpo imply primitive recursive upper bound on \rm{dc} $\, R \,$

•etc.

Traditional Interpretations

For an interpretation τ for R into a Σ -algebra over $\mathbb N,$ $s\rightarrow_R t$ implies $\tau(s)$ $-\,\tau(t)\geq 1$ Thus

$$
\left| \mathrm{dh}_R(t) \leq \tau(t) \right|
$$

 \bullet $~\tau$ as a $~\Sigma$ -homomorphism:

$$
\tau(f(\ldots t \ldots)) = f_{\tau}(\ldots \tau(t) \ldots)
$$

 $\bullet\,$ all functions f_τ strictly monotone

Then it suffices to show $\tau(\ell\gamma)$ $-\tau(r\gamma)\geq 1.$

Example $abx \rightarrow$ $\rightarrow bax$

Choose

$$
a_{\tau}(n) = 2n
$$

$$
b_{\tau}(n) = 1 + n
$$

$$
c_{\tau} = 0
$$

Then $\tau(abt) - \tau(bat) = 2(1 + \tau(t)) - (1 + 2\tau(t)) = 1$.
Both a_{τ} and b_{τ} are strictly monotone. Both a_{τ} and b_{τ} are strictly monotone.

For instance $\boxed{\tau(a^nb^mc)=2^n\cdot m}$ but $\boxed{\mathrm{dh}_R(a^nb^mc)=n\cdot m}$ Huge Gap. Problem:

$$
\tau(a^k\ ab\ t)-\tau(a^k\ ba\ t)=2^k,
$$

reflecting <mark>*one* rewrite step</mark>.

Context-dependent Interpretations

- Now, interpretation τ is parameterized with $\Delta\in\mathbb{Q}_{0}^{+}$ 0.
- Show $s\rightarrow_R t$ implies $\tau[\Delta](s)-\tau[\Delta](t)\geq \Delta$. The $\begin{equation} -\ \tau[\Delta](t) \geq \Delta. \end{equation}$ Then

$$
\overline{\mathrm{d} \mathrm{h}_R(t)} \leq \tau[\Delta](t)/\Delta
$$

Thus

$$
\mathrm{dh}_R(t) \le \inf_{\Delta > 0} \frac{\tau[\Delta](t)}{\Delta}
$$

• Term evaluation now depends on Δ :

$$
\tau[\Delta](f(\ldots t_i \ldots)) = f_{\tau}[\Delta](\ldots \tau[f_{\tau}^i(\Delta)](t_i) \ldots)
$$

• Extra constraints to ensure that $\tau[\Delta](\ell \gamma)$ $- \tau[\Delta](r\gamma) \geq \Delta$ suffices: Δ -monotonicity

Example $abx \rightarrow$ \rightarrow bax (cont'd)

 \sf{Id} ea: introduce parameter via $2 \mapsto$

dea: introduce parameter via $2 \mapsto 1 + \Delta$.
From here on, no *creative step* is needed at all. Choose

$$
a_{\tau}[\Delta](z) = (1 + \Delta)z
$$

$$
b_{\tau}[\Delta](z) = 1 + z
$$

$$
c_{\tau}[\Delta] = 0
$$

The Δ -monotonicity constraint is (analogously for $b_\tau)$

$$
a_{\tau}[\Delta](z + a_{\tau}^1(\Delta)) - a_{\tau}[\Delta](z) \ge \Delta
$$

That is, $a_{\tau}[\Delta]$ propagates a difference of at least Δ , provided a difference of at least $a_{\tau}^{1}(\Delta)$ (in argument $1)$ is given.

Example $abx \rightarrow$ \rightarrow bax (cont'd)

Solving these constraints ^gives

$$
a_{\tau}^{1}(\Delta) \ge \frac{\Delta}{1+\Delta}
$$

$$
b_{\tau}^{1}(\Delta) \ge \Delta
$$

 $\mathsf{Choosing} = \mathsf{for} \geq,$ we found rather systematically

$$
\tau[\Delta](a(t)) = (1 + \Delta) \cdot \tau \left[\frac{\Delta}{1 + \Delta}\right](t)
$$

$$
\tau[\Delta](b(t)) = 1 + \tau[\Delta](t)
$$

$$
\tau[\Delta](c) = 0
$$

Example $abx \rightarrow$ \rightarrow bax (cont'd)

- Show $\tau[\Delta](abt)-\tau[\Delta](bat)\geq \Delta$ (exercise)
- E.g. $\tau[\Delta](a^n b^m c) = (1 + \Delta n)m$

Thus

$$
\mathrm{dh}_R(a^n b^m c) \le \inf_{\Delta > 0} \frac{\tau[\Delta](\dots)}{\Delta} = \inf_{\Delta > 0} \left(\frac{1}{\Delta} + n\right) m = n \cdot m
$$

For this system,

$$
\inf_{\Delta>0} \frac{\tau[\Delta](t)}{\Delta} = \mathrm{dh}_R(t)
$$

in fact holds *for every term* t (exercise): $\boxed{\textit{exact bounds}}$

ISR 2008 – Obergurgl, Austria – p.95/111

Example $(x \circ y) \circ z \to x \circ (y \circ z)$

Traditionally,

$$
\circ_\tau(n_1, n_2) = 2n_1 + n_2 + 1
$$

By the same *creative step* as above guess

$$
\circ_{\tau}[\Delta](z_1, z_2) = (1 + \Delta)z_1 + z_2 + 1
$$

Solving the Δ -monotonicity constraints yields

$$
\tau[\Delta](s \circ t) = (1 + \Delta) \cdot \tau \left[\frac{\Delta}{1 + \Delta}\right](s) + \tau[\Delta](t) + 1
$$

Remark: proof of $\tau[\Delta](\ell \gamma) - \tau[\Delta](r \gamma) \geq \Delta$ uses induction.

$$
(x \circ y) \circ z \to x \circ (y \circ z) \text{ (cont'd)}
$$

Again *for every term t* (exercise)

$$
\inf_{\Delta>0} \frac{\tau[\Delta](t)}{\Delta} = \mathrm{dh}_R(t)
$$

• Expl: For the *"left comb"* ℓ of depth n

$$
\tau[\Delta](\ell) = n + \Delta n(n-1)/2
$$

thus ${\rm dh}_R(\ell)\leq \inf_{\Delta>0}\tau[\Delta](\ell)/\Delta=\boxed{n(n-1)/2}$

 $\bullet\;$ Expl: For the "*right comb"* r of depth n

$$
\tau[\Delta](r) = n
$$

thus ${\rm dh}_R(r)\leq \inf_{\Delta>0} \tau[\Delta](r)/\Delta=\lfloor 0\rfloor$

Monotonicity revisited

Strict monotonicity

$$
m > n \quad \text{implies} \quad f_{\tau}(\dots m \dots) > f_{\tau}(\dots n \dots)
$$

is (over $\mathbb{N})$ equivalent to

$$
m - n \ge 1 \quad \text{implies} \quad f_{\tau}(\dots m \dots) - f_{\tau}(\dots n \dots) \ge 1
$$

thus equivalent to strict monotonicity of \gt_1 , where

$$
m >_{1} n \quad \text{iff} \quad m - n \ge 1
$$

- \bullet $>_{1}$ $_1$ is total on $\mathbb N$
- >1 is not total $_1$ is not total on \mathbb{Q}^+_0 $\rm 0$ $_0^+$ (but well-founded)

Expl $g(a) \rightarrow$ $g(b), f(b) \rightarrow f(a)$

- No interpretation into N with $\tau(\ell) >_1 \tau(r)$ and strict monotonicity modulo $>_1$ exists (why?)
- It does exist into $(\mathbb{Q}^+_0, >_1)$, even into a finite subset:

• Exercise: verify $\tau(\ell) >_1 \tau(r)$; strict monotonicity of $>_1$

Expl ffx $x \rightarrow$ $\rightarrow fgf$

- Not simply terminating
- An interpretation into $(\mathbb{Q}^+_0, >_1)$ exists:

$$
f_{\tau}(z) = n + 1/2
$$
 if $n - 1 < z \le n$
\n $g_{\tau}(z) = n$ if $n - 1/2 < z \le n + 1/2$

• The resulting (linear) upper bound

$$
\boxed{\mathrm{dh}(t) = \lfloor \tau(t) \rfloor}
$$

is exact (exercise).

Context-dependent Int's: Remarks

- Even if exact bounds are not achievable, improved bounds can be derived.
- Proving that bounds are exact: typically needsknowledge about optimal / worst case rewrite strategies.
- Top-down propagation of Δ versus bottom-up term evaluation: two-phase transducer.
- $\bullet\,$ Here: weak context-dependency. Only a non-local strong version would deserve to be called *context-sensitive*.
- • Implementation
	- $\bullet\,$ Non-trivial calculations \leadsto computer algebra?
	- $\bullet\,$ Inductive proofs \leadsto theorem prover?
	- Work by $[\textsf{Schnabl/Moser}]$ $|$ <code>cdiprover3</code> \leadsto <code>demo</code>

Relative Termination

 $\mathsf{Let}\ S=$ $rac{1}{2}$ ${ab \rightarrow baa}$, $R =$
B-stens in $R \cup S$. . . $\{cb \rightarrow bbc\}$.
Corivations Consider R -steps in $R\cup S$ -derivations.

The interpretation $\Sigma\rightarrow(\mathbb{N}\rightarrow\mathbb{N})$ with

 $a \mapsto \lambda n.n \qquad b \mapsto \lambda n.n + 1 \qquad c \mapsto \lambda n.3n$

is \lfloor constant \rfloor for S and \lfloor decreasing \rfloor for R \Rightarrow number of R-steps is $2^{O(n)}$.

Relative Termination

 $\mathsf{Let}\ S=$ $rac{1}{2}$ ${ab \rightarrow baa}$, $R =$
B-stens in $R \cup S$. . . $\{cb \rightarrow bbc\}$.
Corivations Consider R -steps in $R\cup S$ -derivations.

The interpretation $\Sigma\rightarrow(\mathbb{N}\rightarrow\mathbb{N})$ with

 $a \mapsto \lambda n.n \qquad b \mapsto \lambda n.n + 1 \qquad c \mapsto \lambda n.3n$

is \lfloor constant \rfloor for S and \lfloor decreasing \rfloor for R \Rightarrow number of R-steps is $2^{O(n)}$.

Relative termination allows to remove rules successively \leadsto

- Modular termination proofs
- Automatic methods for proving relative termination areincorporated in all state of the art termination provers.
- $\bullet \; \leadsto \;$ Annual termination competition $\;$ [WST] $\;$

The Problem

Let R and S be rewriting systems.
Accure to write ties of R th G has Assume termination of $R \cup S$ has been shown by proving termination of R/S and termination of $S.$

• \bullet \mid Give a bound on $\mathrm{d}\mathrm{c}$ $R\cup S$ \overline{S} in terms of $\mathrm{d c}_{R/S}$ and $\mathrm{d} \overline{\mathrm{c}}$ $S\cdot$

Note: Proof methods for relative terminationcan handle situations where S is not terminating. Here we assume that S *is* terminating.

Basic Observation

Let Δ_R $R = \max\{|r| - |\ell| \mid (\ell \to r) \in R\}$, and assume (for simplicity) that this implies $\max\{|x| - |y| \mid x \rightarrow_R$ $y\} \leq \Delta_R.$

• Note: $\Delta_R=0$ in case R is not size-incre $R = 0$ in case R is not size-increasing.

Now consider an arbitrary finite derivation modulo $R\cup S$:

$$
\boxed{x_0 \to_S^* x'_0 \to_R x_1 \to_S^* x'_1 \to_R x_2 \to_S^* \cdots \to_S^* x'_{k-1} \to_R x_k \to_S^* x'_k}
$$

Define $\delta : \mathbb{N} \to \mathbb{N}$ by $\delta(n) = n + \Delta$ \pmb{S} $S\cdot \mathrm{dc}$ $\mathbf{s}(n) + \Delta_R$ Then $|x_{i+1}| \leq \delta(|x_i|).$

Monotonicity of dc_{S} $_{S}$ implies monotonicity of δ , thus

$$
|x_{i+1}| \leq \delta^i(|x_0|).
$$

The General Upper Bound

$$
x_0 \rightarrow_S^* x'_0 \rightarrow_R x_1 \rightarrow_S^* x'_1 \rightarrow_R x_2 \rightarrow_S^* \cdots \rightarrow_S^* x'_{k-1} \rightarrow_R x_k \rightarrow_S^* x'_k
$$

. . . thus the length of the above derivation is bounded by

$$
d c_{R \cup S}(|x_0|) \leq d c_{R/S}(|x_0|) + \sum_{i=0}^k d c_S(|x_i|)
$$

$$
\leq d c_{R/S}(|x_0|) + \sum_{i=0}^k d c_S(\delta^i(|x_0|))
$$

We have δ^{i+1} $\delta^i(n) \geq \delta^i(n)$ by $\delta(n) \geq n$. Since $k \leq \mathrm{dc}_{R/S}(|x_0|)$,

$$
\deg_{\cup S}(n) \in O\Big(\deg_{/S}(n) \cdot \deg\big(\delta^{\deg_{/S}(n)}(n)\big)\Big)\Big|
$$

Particular Cases

• R and S not size-increasing: $\delta(n) = n$ $dc_{B \cup S}(n) \in O(dc_{B/S}(n) \cdot dc_{S}(n))$ $\mathrm{c}_{R\cup S}($ $n)$ $\in O\bigl(\mathrm{d} \mathrm{c}_{R/S}($ $n)\cdot{\rm dc}_S\,\big($ $n)\big)$

Multiplication

Particular Cases

• R and S not size-increasing: $\delta(n) = n$ $\mathrm{dc}_{R\cup S}(n)\in O\big(\mathrm{dc}_{R/S}(n)\cdot\mathrm{dc}_{S}\,\big(n\big)$ $n)\big)$

Multiplication

• S not size-increasing: $\delta(n) = n + \Delta_R$, thus $\delta^i(n) = n + i \cdot \Delta_R$ $\mathrm{dc}_{R\cup S}(n)\in O\big(\mathrm{dc}_{R/S}(n)\cdot\mathrm{dc}_{S}\,\bigl(n+\mathrm{dc}_{S}\,\bigr)$ $n + \mathrm{dc}_{R/S}(n) \cdot \Delta_R))$ **Composition**

Particular Cases

• R and S not size-increasing: $\delta(n) = n$ $\mathrm{dc}_{R\cup S}(n)\in O\big(\mathrm{dc}_{R/S}(n)\cdot\mathrm{dc}_{S}\,\big(n\big)$ $n)\big)$

Multiplication

- S not size-increasing: $\delta(n) = n + \Delta_R$, thus $\delta^i(n) = n + i \cdot \Delta_R$ $\mathrm{dc}_{R\cup S}(n)\in O\big(\mathrm{dc}_{R/S}(n)\cdot\mathrm{dc}_{S}\,\bigl(n+\mathrm{dc}_{S}\,\bigr)$ $n + \mathrm{dc}_{R/S}(n) \cdot \Delta_R))$ **Composition**
- S size-increasing: $\delta \in \Theta(\mathrm{dc})$ $_S)$ $\mathrm{dc}_{R\cup S}(n)\in O\big(\mathrm{dc}_{R/S}(n)\cdot\mathrm{dc}_{S}^{\mathrm{dc}_{R/S}(n)+1}(n)\big)$

Iteration

Consequences

- Consider function classes with certain closure properties:
	- Closed under addition, multiplication, compositionExample: polynomials
	- Closed under iterationExample: primitive recursive functions

Consequences

- Consider function classes with certain closure properties:
	- Closed under addition, multiplication, compositionExample: polynomials
	- Closed under iterationExample: primitive recursive functions

• Can this genera^l bound be improved?No, as the following generic construction reveals.
<– (For string rewriting, therefore can be done in everysufficiently rich rewriting model.)

The Lower Bound Result

The genera^l upper bound can be attained, even for string rewriting. Proof:

Take arbitrary string rewriting systems R_0 over Σ , S_0 over Γ (w.l.o.g. disjoint alphabets) and add new letters $\sigma,~\gamma$. Define

$$
R = \{l \rightarrow r\sigma \mid (l \rightarrow r) \in R_0\}
$$
 (introduce marker)
\n
$$
S = S_0 \cup \{\sigma a \rightarrow a\sigma \mid a \in \Sigma\}
$$
 (move marker)
\n
$$
\cup \{\sigma \rightarrow \gamma\}
$$
 (switch markers)
\n
$$
\cup \{\gamma b \rightarrow c\gamma \mid b, c \in \Gamma\}
$$
 (nondeterministic reset)

We have
$$
\[\frac{\text{dc}_{R_0} \approx \text{dc}_{R/S}}{\text{dc}_{R \cup S}}\]
$$
, $\[\frac{\text{dc}_{S_0} + \Theta(n^2) \approx \text{dc}_S}{\text{dc}_{R/S}}$ and dc_{S} .
So the construction shows optimality if $\text{dc}_S \in \Omega(n^2)$.

Example: Polynomial Upper Bound

 $B_k=$ $\{ki \rightarrow jk \mid k > i, j\}$

 $R_d = B_2 \cup \cdots \cup B_d$

over alphabet $\{1, 2, \ldots, d\}$. The bound $\boxed{\mathrm{dc}}$ $R_d \in \Theta(n)$ shown via some matrix interpretation of dimension $d + 1$. \emph{d} $\left\lfloor \frac{d}{2} \right\rfloor$ can be

Example: Polynomial Upper Bound

 $B_k=$ $\{ki \rightarrow jk \mid k > i, j\}$

 $R_d = B_2 \cup \cdots \cup B_d$

over alphabet $\{1, 2, \ldots, d\}$. The bound $\boxed{\mathrm{dc}}$ $R_d \in \Theta(n)$ shown via some matrix interpretation of dimension $d + 1$. \emph{d} $\left\lfloor \frac{d}{2} \right\rfloor$ can be

^A simpler proof via relative termination:

- Show $SN(B_d/R_{d-1})$ via the interpretation (100) (11) $\{1,\ldots,d\}$ − $1\} \mapsto \left(\begin{smallmatrix} 1 & 0 & 0 \ 0 & 1 & 1 \ 0 & 0 & 1 \end{smallmatrix}\right), \qquad d \mapsto \left(\begin{smallmatrix} 1 & 1 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{smallmatrix}\right)$
- dc $_{B_d/R_{d-1}}\in O(n)$ 2 $^{2})$ (matrices are upper triangular)
- \bullet B_d result implies (by induction) $\left|\mathrm{d c}_{R_d}\in O(n^{2(d)})\right|$ $_d$ and R_{d-1} $_1$ are size-preserving, so the upper bound $\left| \binom{d-1}{ } \right|$

Bound is overestimated, but nevertheless polynomial. Termination proof much easier to find.

• Can the genera^l upper bound be reached for $dc_S \in O(n)$?

Discussion

• Can the genera^l upper bound be reached for $\mathrm{dc}_{S}\in O(n)$? Yes for term rewriting:

$$
R = \{ f(s(x), y, z) \to f(x, z, y) \mid x, y, z \ge 0 \}
$$

$$
S = \{ f(x, s(y), z) \to f(x, y, s(s(z))) \mid x, y, z \ge 0 \}
$$

Here, $\mathrm{d} \mathrm{c}_{R/S}\in O(n)$ and $\mathrm{d} \mathrm{c}_{S}\in O(n)$, but $\mathrm{d} \mathrm{c}_{R\cup S}$ is exponential: $f(s^n(0), 1, 0) \to^* f(0, 0, s^{2^n}(0))$.

Discussion

• Can the genera^l upper bound be reached for $\mathrm{dc}_{S}\in O(n)$? Yes for term rewriting:

$$
R = \{ f(s(x), y, z) \to f(x, z, y) \mid x, y, z \ge 0 \}
$$

$$
S = \{ f(x, s(y), z) \to f(x, y, s(s(z))) \mid x, y, z \ge 0 \}
$$

Here, $\mathrm{d} \mathrm{c}_{R/S}\in O(n)$ and $\mathrm{d} \mathrm{c}_{S}\in O(n)$, but $\mathrm{d} \mathrm{c}_{R\cup S}$ is exponential: $f(s^n(0), 1, 0) \to^* f(0, 0, s^{2^n}(0))$.

• Remark: Similarly with binary symbol $f.$ Exercise: How about unary symbols only, i.e. for string rewriting?

Discussion

• Can the genera^l upper bound be reached for $\mathrm{dc}_{S}\in O(n)$? Yes for term rewriting:

$$
R = \{ f(s(x), y, z) \to f(x, z, y) \mid x, y, z \ge 0 \}
$$

$$
S = \{ f(x, s(y), z) \to f(x, y, s(s(z))) \mid x, y, z \ge 0 \}
$$

Here, $\mathrm{d} \mathrm{c}_{R/S}\in O(n)$ and $\mathrm{d} \mathrm{c}_{S}\in O(n)$, but $\mathrm{d} \mathrm{c}_{R\cup S}$ is exponential: $f(s^n(0), 1, 0) \to^* f(0, 0, s^{2^n}(0))$.

- Remark: Similarly with binary symbol $f.$ Exercise: How about unary symbols only, i.e. for string rewriting?
- Make the implicit notion of "abstract reduction system with size measure" explicit.

Acknowledgements

Thanks for generously sharing ideas, exercises, slides . . . to Alfons Geser, Jörg Endrullis, Johannes Waldmann, Hans Zantema, and many others

. . . and thanks for patiently listening.