
Isabelle/HOL Exercises

Advanced

Merge Sort

Sorting with lists

For simplicity we sort natural numbers.

Define a predicate sorted that checks if each element in the list is less or equal to the
following ones; le n xs should be true iff n is less or equal to all elements of xs.

consts
le :: "nat ⇒ nat list ⇒ bool"

sorted :: "nat list ⇒ bool"

Define a function count xs x that counts how often x occurs in xs.

consts
count :: "nat list => nat => nat"

Merge sort

Implement merge sort : a list is sorted by splitting it into two lists, sorting them separately,
and merging the results.

With the help of recdef define two functions

consts merge :: "nat list × nat list ⇒ nat list"

msort :: "nat list ⇒ nat list"

and show

theorem "sorted (msort xs)"

theorem "count (msort xs) x = count xs x"

You may have to prove lemmas about ex.sorted and count.

Hints:

• For recdef see Section 3.5 of the Isabelle/HOL tutorial.

• To split a list into two halves of almost equal length you can use the functions
n div 2 , take und drop, where take n xs returns the first n elements of xs and
drop n xs the remainder.



• Here are some potentially useful lemmas:
linorder_not_le: (¬ x ≤ y) = (y < x)

order_less_le: (x < y) = (x ≤ y ∧ x 6= y)

min_def: min a b = (if a ≤ b then a else b)

2


