## Isabelle/HOL Exercises

## Advanced

## Merge Sort

## Sorting with lists

For simplicity we sort natural numbers.
Define a predicate sorted that checks if each element in the list is less or equal to the following ones; le $n$ xs should be true iff $n$ is less or equal to all elements of $x s$.

```
consts
    le :: "nat => nat list => bool"
    sorted :: "nat list => bool"
```

primrec
"le a [] = True"
"le a (x\#xs) = (a <= x \& le a xs)"
primrec
"sorted [] = True"
"sorted (x\#xs) = (le x xs \& sorted xs)"

Define a function count xs $x$ that counts how often $x$ occurs in xs.

```
consts
    count :: "nat list => nat => nat"
primrec
    "count [] y = 0"
    "count (x#xs) y = (if x=y then Suc(count xs y) else count xs y)"
```


## Merge sort

Implement merge sort: a list is sorted by splitting it into two lists, sorting them separately, and merging the results.
With the help of recdef define two functions

```
consts merge :: "nat list > nat list => nat list"
    msort :: "nat list }=>\mathrm{ nat list"
```

```
recdef merge "measure (%(xs,ys). size xs + size ys)"
    "merge (x#xs, y#ys) = (if x <= y then x # merge(xs,y#ys) else y #
merge(x#xs,ys))"
    "merge (xs, []) = xs"
    "merge ([], ys) = ys"
recdef msort "measure size"
    "msort [] = []"
    "msort [x] = [x]"
    "msort xs = merge (msort(take (size xs div 2) xs), msort(drop (size xs div 2)
xs))"
and show
theorem "sorted (msort xs)"
theorem "count (msort xs) \(x=\) count \(x s x "\)
lemma [simp]: "x \(\leq y \Longrightarrow\) le y xs \(\longrightarrow\) le x xs"
apply (induct_tac xs)
apply auto
done
lemma [simp]: "count (merge(xs,ys)) \(x=\) count xs \(x+c o u n t ~ y s ~ x " ~\)
apply (induct xs ys rule: merge.induct)
apply auto
done
lemma [simp]: "le x (merge (xs,ys)) = (le x xs \(\wedge\) le x ys)"
apply (induct xs ys rule: merge.induct)
apply auto
done
lemma [simp]: "sorted (merge(xs,ys)) = (sorted xs \(\wedge\) sorted ys)"
apply (induct xs ys rule: merge.induct)
apply (auto simp add: linorder_not_le order_less_le)
done
lemma [simp]: "1 < \(x \Longrightarrow \min x(x \operatorname{div} 2:: n a t)<x "\) by (simp add: min_def linorder_not_le)
lemma [simp]: "1 < x \(\Longrightarrow \mathrm{x}-\mathrm{x}\) div (2::nat) < x" by arith
theorem "sorted (msort xs)"
```

```
    apply (induct_tac xs rule: msort.induct)
    apply auto
done
lemma count_append[simp]: "count (xs @ ys) x = count xs x + count ys x"
    apply (induct xs)
    apply auto
done
theorem "count (msort xs) x = count xs x"
    apply (induct xs rule: msort.induct)
        apply simp
        apply simp
    apply simp
    apply (simp del:count_append add:count_append[symmetric])
done
```

You may have to prove lemmas about sol.sorted and count.
Hints:

- For recdef see Section 3.5 of the Isabelle/HOL tutorial.
- To split a list into two halves of almost equal length you can use the functions $n \operatorname{div} 2$, take und drop, where take $n$ xs returns the first $n$ elements of $x s$ and drop n xs the remainder.
- Here are some potentially useful lemmas:
linorder_not_le: ( $\neg \mathrm{x} \leq \mathrm{y}$ ) $=(\mathrm{y}<\mathrm{x})$
order_less_le: $(x<y)=(x \leq y \wedge x \neq y)$
min_def: min $a b=(i f a \leq b$ then $a$ else $b$ )

