
Isabelle/HOL Exercises

Advanced

Merge Sort

Sorting with lists

For simplicity we sort natural numbers.

Define a predicate sorted that checks if each element in the list is less or equal to the
following ones; le n xs should be true iff n is less or equal to all elements of xs.

consts
le :: "nat ⇒ nat list ⇒ bool"

sorted :: "nat list ⇒ bool"

primrec
"le a [] = True"

"le a (x#xs) = (a <= x & le a xs)"

primrec
"sorted [] = True"

"sorted (x#xs) = (le x xs & sorted xs)"

Define a function count xs x that counts how often x occurs in xs.

consts
count :: "nat list => nat => nat"

primrec
"count [] y = 0"

"count (x#xs) y = (if x=y then Suc(count xs y) else count xs y)"

Merge sort

Implement merge sort : a list is sorted by splitting it into two lists, sorting them separately,
and merging the results.

With the help of recdef define two functions

consts merge :: "nat list × nat list ⇒ nat list"

msort :: "nat list ⇒ nat list"



recdef merge "measure (%(xs,ys). size xs + size ys)"

"merge (x#xs, y#ys) = (if x <= y then x # merge(xs,y#ys) else y #

merge(x#xs,ys))"

"merge (xs, []) = xs"

"merge ([], ys) = ys"

recdef msort "measure size"

"msort [] = []"

"msort [x] = [x]"

"msort xs = merge (msort(take (size xs div 2) xs), msort(drop (size xs div 2)

xs))"

and show

theorem "sorted (msort xs)"

theorem "count (msort xs) x = count xs x"

lemma [simp]: "x ≤ y =⇒ le y xs −→ le x xs"

apply (induct_tac xs)

apply auto

done

lemma [simp]: "count (merge(xs,ys)) x = count xs x + count ys x"

apply(induct xs ys rule: merge.induct)

apply auto

done

lemma [simp]: "le x (merge (xs,ys)) = (le x xs ∧ le x ys)"

apply (induct xs ys rule: merge.induct)

apply auto

done

lemma [simp]: "sorted (merge(xs,ys)) = (sorted xs ∧ sorted ys)"

apply(induct xs ys rule: merge.induct)

apply (auto simp add: linorder_not_le order_less_le)

done

lemma [simp]: "1 < x =⇒ min x (x div 2::nat) < x"

by (simp add: min_def linorder_not_le)

lemma [simp]: "1 < x =⇒ x - x div (2::nat) < x"

by arith

theorem "sorted (msort xs)"

2



apply (induct_tac xs rule: msort.induct)

apply auto

done

lemma count_append[simp]: "count (xs @ ys) x = count xs x + count ys x"

apply (induct xs)

apply auto

done

theorem "count (msort xs) x = count xs x"

apply (induct xs rule: msort.induct)

apply simp

apply simp

apply simp

apply (simp del:count_append add:count_append[symmetric])

done

You may have to prove lemmas about sol.sorted and count.

Hints:

• For recdef see Section 3.5 of the Isabelle/HOL tutorial.

• To split a list into two halves of almost equal length you can use the functions
n div 2 , take und drop, where take n xs returns the first n elements of xs and
drop n xs the remainder.

• Here are some potentially useful lemmas:
linorder_not_le: (¬ x ≤ y) = (y < x)

order_less_le: (x < y) = (x ≤ y ∧ x 6= y)

min_def: min a b = (if a ≤ b then a else b)

3


