Isabelle/HOL Exercises

Advanced

Sorting with Lists and Trees

For simplicity we sort natural numbers.

Sorting with lists

The task is to define insertion sort and prove its correctness. The following functions are required:

```
consts
    insort :: "nat => nat list => nat list"
    sort :: "nat list # nat list"
    le :: "nat => nat list => bool"
    sorted :: "nat list => bool"
```

In your definition, ex.insort x xs should insert a number x into an already sorted list $x s$, and ex.sort ys should build on insort to produce the sorted version of ys.
To show that the resulting list is indeed sorted we need a predicate ex.sorted that checks if each element in the list is less or equal to the following ones; le n xs should be true iff n is less or equal to all elements of $x s$.

Start out by showing a monotonicity property of $1 e$. For technical reasons the lemma should be phrased as follows:

```
lemma [simp]: "x \leq y C le y xs \longrightarrow le x xs"
```

Now show the following correctness theorem:

```
theorem "sorted (sort xs)"
```

This theorem alone is too weak. It does not guarantee that the sorted list contains the same elements as the input. In the worst case, ex.sort might always return [] - surely an undesirable implementation of sorting.

Define a function count xs x that counts how often x occurs in xs.
Show that
theorem "count (sort xs) $x=$ count xs $x "$

Sorting with trees

Our second sorting algorithm uses trees. Thus you should first define a data type bintree of binary trees that are either empty or consist of a node carrying a natural number and two subtrees.

Define a function tsorted that checks if a binary tree is sorted. It is convenient to employ two auxiliary functions tge/tle that test whether a number is greater-or-equal/less-orequal to all elements of a tree.
Finally define a function tree_of that turns a list into a sorted tree. It is helpful to base tree_of on a function ins $n b$ that inserts a number n into a sorted tree b.

Show
theorem [simp]: "tsorted (tree_of xs)"
Again we have to show that no elements are lost (or added). As for lists, define a function tcount $x b$ that counts the number of occurrences of the number x in the tree b.

Show
theorem "tcount (tree_of xs) $x=$ count xs x"
Now we are ready to sort lists. We know how to produce an ordered tree from a list. Thus we merely need a function list_of that turns an (ordered) tree into an (ordered) list. Define this function and prove

```
theorem "sorted (list_of (tree_of xs))"
theorem "count (list_of (tree_of xs)) n = count xs n"
```

Hints:

- Try to formulate all your lemmas as equations rather than implications because that often simplifies their proof. Make sure that the right-hand side is (in some sense) simpler than the left-hand side.
- Eventually you need to relate sorted and tsorted. This is facilitated by a function ge on lists (analogously to tge on trees) and the following lemma (that you will need to prove):

```
ex.sorted (a @ x # b) = (ex.sorted a ^ ex.sorted b ^ ge x a ^ le x b)
```

