Isabelle/HOL Exercises Advanced

Sorting with Lists and Trees

For simplicity we sort natural numbers.

Sorting with lists

The task is to define insertion sort and prove its correctness. The following functions are required:

\mathbf{consts}

In your definition, *sol.insort* x xs should insert a number x into an already sorted list xs, and *sol.sort* ys should build on *insort* to produce the sorted version of ys.

To show that the resulting list is indeed sorted we need a predicate sol.sorted that checks if each element in the list is less or equal to the following ones; $le \ n \ xs$ should be true iff n is less or equal to all elements of xs.

primrec

"le a [] = True" "le a (x#xs) = (a <= x & le a xs)"

primrec

"sorted [] = True"
"sorted (x#xs) = (le x xs & sorted xs)"

primrec

"insort a [] = [a]"
"insort a (x#xs) = (if a <= x then a#x#xs else x # insort a xs)"</pre>

primrec

"sort [] = []" "sort (x#xs) = insort x (sort xs)" Start out by showing a monotonicity property of *le*. For technical reasons the lemma should be phrased as follows:

Now show the following correctness theorem:

```
lemma [simp]:
    "le x (insort a xs) = (x <= a & le x xs)"
    apply (induct_tac xs)
    apply auto
    done
lemma [simp]:
    "sorted (insort a xs) = sorted xs"
    apply (induct_tac xs)
    apply auto
    done
theorem "sorted (sort xs)"
    apply (induct_tac xs)
    apply auto
done</pre>
```

This theorem alone is too weak. It does not guarantee that the sorted list contains the same elements as the input. In the worst case, *sol.sort* might always return [] – surely an undesirable implementation of sorting.

Define a function count xs x that counts how often x occurs in xs.

```
consts
  count :: "nat list => nat => nat"
primrec
  "count [] y = 0"
  "count (x#xs) y = (if x=y then Suc(count xs y) else count xs y)"
Show that
lemma [simp]:
  "count (insort x xs) y =
  (if x=y then Suc (count xs y) else count xs y)"
  apply (induct_tac xs)
  apply auto
done
```

```
theorem "count (sort xs) x = count xs x"
   apply (induct_tac xs)
   apply auto
done
```

Sorting with trees

Our second sorting algorithm uses trees. Thus you should first define a data type *bintree* of binary trees that are either empty or consist of a node carrying a natural number and two subtrees.

datatype bintree = Empty | Node nat bintree bintree

Define a function tsorted that checks if a binary tree is sorted. It is convenient to employ two auxiliary functions tge/tle that test whether a number is greater-or-equal/less-or-equal to all elements of a tree.

Finally define a function $tree_of$ that turns a list into a sorted tree. It is helpful to base $tree_of$ on a function *ins* n b that inserts a number n into a sorted tree b.

```
consts
  tsorted :: "bintree \Rightarrow bool"
  tge :: "nat \Rightarrow bintree \Rightarrow bool"
  tle :: "nat \Rightarrow bintree \Rightarrow bool"
  ins :: "nat \Rightarrow bintree \Rightarrow bintree"
  tree_of :: "nat list \Rightarrow bintree"
primrec
  "tsorted Empty
                               = True"
  "tsorted (Node n t1 t2) = (tsorted t1 \land tsorted t2 \land tge n t1 \land tle n t2)"
primrec
  "tge x Empty
                             = True"
  "tge x (Node n t1 t2) = (n \leq x \wedge tge x t1 \wedge tge x t2)"
primrec
  "tle x Empty
                             = True"
  "tle x (Node n t1 t2) = (x \leq n \wedge tle x t1 \wedge tle x t2)"
primrec
  "ins x Empty
                             = Node x Empty Empty"
  "ins x (Node n t1 t2) = (if x \leq n then Node n (ins x t1) t2 else Node n t1
(ins x t2))"
```

```
primrec
  "tree_of []
                  = Empty"
  "tree_of (x#xs) = ins x (tree_of xs)"
Show
lemma [simp]: "tge a (ins x t) = (x \leq a \land tge a t)"
  apply (induct_tac t)
  apply auto
done
lemma [simp]: "tle a (ins x t) = (a \leq x \land tle a t)"
  apply (induct_tac t)
  apply auto
done
lemma [simp]: "tsorted (ins x t) = tsorted t"
  apply (induct_tac t)
  apply auto
done
theorem [simp]: "tsorted (tree_of xs)"
  apply (induct_tac xs)
  apply auto
done
```

```
Again we have to show that no elements are lost (or added). As for lists, define a function t_{count x b} that counts the number of occurrences of the number x in the tree b.
```

```
(if x=y then Suc (tcount t y) else tcount t y)"
apply(induct_tac t)
apply auto
done
```

```
theorem "tcount (tree_of xs) x = count xs x"
   apply (induct_tac xs)
   apply auto
   done
```

Now we are ready to sort lists. We know how to produce an ordered tree from a list. Thus we merely need a function *list_of* that turns an (ordered) tree into an (ordered) list. Define this function and prove

theorem "sorted (list_of (tree_of xs))"
theorem "count (list_of (tree_of xs)) n = count xs n"

Hints:

- Try to formulate all your lemmas as equations rather than implications because that often simplifies their proof. Make sure that the right-hand side is (in some sense) simpler than the left-hand side.
- Eventually you need to relate *sorted* and *tsorted*. This is facilitated by a function *ge* on lists (analogously to *tge* on trees) and the following lemma (that you will need to prove):

sol.sorted (a @ x # b) = (sol.sorted a \land sol.sorted b \land ge x a \land le x b)

\mathbf{consts}

```
ge :: "nat \Rightarrow nat list \Rightarrow bool"
list_of :: "bintree \Rightarrow nat list"
```

primrec

"ge a [] = True" "ge a (x#xs) = (x \leq a \land ge a xs)"

primrec

```
"list_of Empty = []"
"list_of (Node n t1 t2) = list_of t1 @ [n] @ list_of t2"
```

```
lemma [simp]: "le x (a@b) = (le x a \ le x b)"
apply (induct_tac a)
apply auto
```

done

```
lemma [simp]: "ge x (a@b) = (ge x a \ ge x b)"
apply (induct_tac a)
```

```
apply auto
done
lemma [simp]:
  "sorted (a@x#b) = (sorted a \land sorted b \land ge x a \land le x b)"
  apply (induct_tac a)
  apply auto
done
lemma [simp]: "ge n (list_of t) = tge n t"
  apply (induct_tac t)
  apply auto
done
lemma [simp]: "le n (list_of t) = tle n t"
  apply (induct_tac t)
  apply auto
done
lemma [simp]: "sorted (list_of t) = tsorted t"
  apply (induct_tac t)
  apply auto
done
theorem "sorted (list_of (tree_of xs))"
  by auto
lemma count_append [simp]: "count (a@b) n = count a n + count b n"
  apply (induct a)
  apply auto
done
lemma [simp]: "count (list_of b) n = tcount b n"
  apply (induct b)
  apply auto
done
theorem "count (list_of (tree_of xs)) n = count xs n"
  apply (induct xs)
  apply auto
done
```