
Isabelle/HOL Exercises

Advanced

Sorting with Lists and Trees

For simplicity we sort natural numbers.

Sorting with lists

The task is to define insertion sort and prove its correctness. The following functions are
required:

consts
insort :: "nat ⇒ nat list ⇒ nat list"

sort :: "nat list ⇒ nat list"

le :: "nat ⇒ nat list ⇒ bool"

sorted :: "nat list ⇒ bool"

In your definition, sol.insort x xs should insert a number x into an already sorted list
xs, and sol.sort ys should build on insort to produce the sorted version of ys.

To show that the resulting list is indeed sorted we need a predicate sol.sorted that checks
if each element in the list is less or equal to the following ones; le n xs should be true iff
n is less or equal to all elements of xs.

primrec
"le a [] = True"

"le a (x#xs) = (a <= x & le a xs)"

primrec
"sorted [] = True"

"sorted (x#xs) = (le x xs & sorted xs)"

primrec
"insort a [] = [a]"

"insort a (x#xs) = (if a <= x then a#x#xs else x # insort a xs)"

primrec
"sort [] = []"

"sort (x#xs) = insort x (sort xs)"



Start out by showing a monotonicity property of le. For technical reasons the lemma should
be phrased as follows:

lemma [simp]: "x ≤ y =⇒ le y xs −→ le x xs"

apply (induct_tac xs)

apply auto

done

Now show the following correctness theorem:

lemma [simp]:

"le x (insort a xs) = (x <= a & le x xs)"

apply (induct_tac xs)

apply auto

done

lemma [simp]:

"sorted (insort a xs) = sorted xs"

apply (induct_tac xs)

apply auto

done

theorem "sorted (sort xs)"

apply (induct_tac xs)

apply auto

done

This theorem alone is too weak. It does not guarantee that the sorted list contains the
same elements as the input. In the worst case, sol.sort might always return [] – surely
an undesirable implementation of sorting.

Define a function count xs x that counts how often x occurs in xs.

consts
count :: "nat list => nat => nat"

primrec
"count [] y = 0"

"count (x#xs) y = (if x=y then Suc(count xs y) else count xs y)"

Show that

lemma [simp]:

"count (insort x xs) y =

(if x=y then Suc (count xs y) else count xs y)"

apply (induct_tac xs)

apply auto

done

2



theorem "count (sort xs) x = count xs x"

apply (induct_tac xs)

apply auto

done

Sorting with trees

Our second sorting algorithm uses trees. Thus you should first define a data type bintree

of binary trees that are either empty or consist of a node carrying a natural number and
two subtrees.

datatype bintree = Empty | Node nat bintree bintree

Define a function tsorted that checks if a binary tree is sorted. It is convenient to employ
two auxiliary functions tge/tle that test whether a number is greater-or-equal/less-or-
equal to all elements of a tree.

Finally define a function tree_of that turns a list into a sorted tree. It is helpful to base
tree_of on a function ins n b that inserts a number n into a sorted tree b.

consts
tsorted :: "bintree ⇒ bool"

tge :: "nat ⇒ bintree ⇒ bool"

tle :: "nat ⇒ bintree ⇒ bool"

ins :: "nat ⇒ bintree ⇒ bintree"

tree_of :: "nat list ⇒ bintree"

primrec
"tsorted Empty = True"

"tsorted (Node n t1 t2) = (tsorted t1 ∧ tsorted t2 ∧ tge n t1 ∧ tle n t2)"

primrec
"tge x Empty = True"

"tge x (Node n t1 t2) = (n ≤ x ∧ tge x t1 ∧ tge x t2)"

primrec
"tle x Empty = True"

"tle x (Node n t1 t2) = (x ≤ n ∧ tle x t1 ∧ tle x t2)"

primrec
"ins x Empty = Node x Empty Empty"

"ins x (Node n t1 t2) = (if x ≤ n then Node n (ins x t1) t2 else Node n t1

(ins x t2))"

3



primrec
"tree_of [] = Empty"

"tree_of (x#xs) = ins x (tree_of xs)"

Show

lemma [simp]: "tge a (ins x t) = (x ≤ a ∧ tge a t)"

apply (induct_tac t)

apply auto

done

lemma [simp]: "tle a (ins x t) = (a ≤ x ∧ tle a t)"

apply (induct_tac t)

apply auto

done

lemma [simp]: "tsorted (ins x t) = tsorted t"

apply (induct_tac t)

apply auto

done

theorem [simp]: "tsorted (tree_of xs)"

apply (induct_tac xs)

apply auto

done

Again we have to show that no elements are lost (or added). As for lists, define a function
tcount x b that counts the number of occurrences of the number x in the tree b.

consts
tcount :: "bintree => nat => nat"

primrec
"tcount Empty y = 0"

"tcount (Node x t1 t2) y = (if x=y then

Suc (tcount t1 y + tcount t2 y)

else

tcount t1 y + tcount t2 y)"

Show

lemma [simp]: "tcount (ins x t) y =

(if x=y then Suc (tcount t y) else tcount t y)"

apply(induct_tac t)

apply auto

done

4



theorem "tcount (tree_of xs) x = count xs x"

apply (induct_tac xs)

apply auto

done

Now we are ready to sort lists. We know how to produce an ordered tree from a list. Thus
we merely need a function list_of that turns an (ordered) tree into an (ordered) list.
Define this function and prove

theorem "sorted (list_of (tree_of xs))"

theorem "count (list_of (tree_of xs)) n = count xs n"

Hints:

• Try to formulate all your lemmas as equations rather than implications because that
often simplifies their proof. Make sure that the right-hand side is (in some sense)
simpler than the left-hand side.

• Eventually you need to relate sorted and tsorted. This is facilitated by a function
ge on lists (analogously to tge on trees) and the following lemma (that you will
need to prove):

sol.sorted (a @ x # b) = (sol.sorted a ∧ sol.sorted b ∧ ge x a ∧ le x b)

consts
ge :: "nat ⇒ nat list ⇒ bool"

list_of :: "bintree ⇒ nat list"

primrec
"ge a [] = True"

"ge a (x#xs) = (x ≤ a ∧ ge a xs)"

primrec
"list_of Empty = []"

"list_of (Node n t1 t2) = list_of t1 @ [n] @ list_of t2"

lemma [simp]: "le x (a@b) = (le x a ∧ le x b)"

apply (induct_tac a)

apply auto

done

lemma [simp]: "ge x (a@b) = (ge x a ∧ ge x b)"

apply (induct_tac a)

5



apply auto

done

lemma [simp]:

"sorted (a@x#b) = (sorted a ∧ sorted b ∧ ge x a ∧ le x b)"

apply (induct_tac a)

apply auto

done

lemma [simp]: "ge n (list_of t) = tge n t"

apply (induct_tac t)

apply auto

done

lemma [simp]: "le n (list_of t) = tle n t"

apply (induct_tac t)

apply auto

done

lemma [simp]: "sorted (list_of t) = tsorted t"

apply (induct_tac t)

apply auto

done

theorem "sorted (list_of (tree_of xs))"

by auto

lemma count_append [simp]: "count (a@b) n = count a n + count b n"

apply (induct a)

apply auto

done

lemma [simp]: "count (list_of b) n = tcount b n"

apply (induct b)

apply auto

done

theorem "count (list_of (tree_of xs)) n = count xs n"

apply (induct xs)

apply auto

done

6


