
Isabelle/HOL Exercises

Arithmetic

Power, Sum

Power

Define a primitive recursive function pow x n that computes xn on natural numbers.

consts
pow :: "nat => nat => nat"

Prove the well known equation xm·n = (xm)n:

theorem pow_mult: "pow x (m * n) = pow (pow x m) n"

Hint: prove a suitable lemma first. If you need to appeal to associativity and commutativity
of multiplication: the corresponding simplification rules are named mult_ac.

Summation

Define a (primitive recursive) function sum ns that sums a list of natural numbers:
sum[n1, . . . , nk] = n1 + · · · + nk.

consts
sum :: "nat list => nat"

Show that sum is compatible with rev. You may need a lemma.

theorem sum_rev: "sum (rev ns) = sum ns"

Define a function Sum f k that sums f from 0 up to k−1: Sum f k = f 0+ · · ·+f(k−1).

consts
Sum :: "(nat => nat) => nat => nat"

Show the following equations for the pointwise summation of functions. Determine first
what the expression whatever should be.

theorem "Sum (%i. f i + g i) k = Sum f k + Sum g k"

theorem "Sum f (k + l) = Sum f k + Sum whatever l"

What is the relationship between sum and Sum? Prove the following equation, suitably
instantiated.



theorem "Sum f k = sum whatever"

Hint: familiarize yourself with the predefined functions map and [i..<j] on lists in theory
List.

2


