Isabelle/HOL Exercises Arithmetic

Power, Sum

Power

Define a primitive recursive function $pow \ x \ n$ that computes x^n on natural numbers.

\mathbf{consts}

pow :: "nat => nat => nat"

Prove the well known equation $x^{m \cdot n} = (x^m)^n$:

theorem pow_mult: "pow x (m * n) = pow (pow x m) n"

Hint: prove a suitable lemma first. If you need to appeal to associativity and commutativity of multiplication: the corresponding simplification rules are named *mult_ac*.

Summation

Define a (primitive recursive) function sum ns that sums a list of natural numbers: $sum[n_1, \ldots, n_k] = n_1 + \cdots + n_k.$

\mathbf{consts}

sum :: "nat list => nat"

Show that *sum* is compatible with *rev*. You may need a lemma.

theorem sum_rev: "sum (rev ns) = sum ns"

Define a function Sum f k that sums f from 0 up to k-1: Sum f $k = f \ 0 + \cdots + f(k-1)$.

consts
Sum :: "(nat => nat) => nat => nat"

Show the following equations for the pointwise summation of functions. Determine first what the expression *whatever* should be.

theorem "Sum (%i. f i + g i) k = Sum f k + Sum g k" theorem "Sum f (k + 1) = Sum f k + Sum whatever 1"

What is the relationship between *sum* and *Sum*? Prove the following equation, suitably instantiated.

theorem "Sum f k = sum whatever"

Hint: familiarize yourself with the predefined functions map and [i..<j] on lists in theory List.