Isabelle/HOL Exercises Arithmetic

Magical Methods (Computing with Natural Numbers)

A book about Vedic mathematics describes three methods to make the calculation of squares of natural numbers easier:

- MM1: Numbers whose predecessors have squares that are known or can easily be calculated. For example: Needed: 61²
 Given: 60² = 3600
 Observe: 61² = 3600 + 60 + 61 = 3721
- *MM2*: Numbers greater than, but near 100. For example: Needed: 102^2 Let h = 102 - 100 = 2, $h^2 = 4$ Observe: $102^2 = (102 + h)$ shifted two places to the left $+h^2 = 10404$
- *MM3*: Numbers ending in 5. For example: Needed: 85²
 Observe: 85² = (8 * 9) appended to 25 = 7225
 Needed: 995²
 Observe: 995² = (99 * 100) appended to 25 = 990025

In this exercise we will show that these methods are not so magical after all!

- Based on MM1 define a function sq that calculates the square of a natural number.
- Prove the correctness of sq (i.e. sq n = n * n).
- Formulate and prove the correctness of *MM2*. Hints:
 - Generalise MM2 for an arbitrary constant (instead of 100).
 - Universally quantify all variables other than the induction variable.
- Formulate and prove the correctness of *MM3*. Hints:

- $-\,$ Try to formulate the property 'numbers ending in 5' such that it is easy to get to the rest of the number.
- Proving the binomial formula for $(a + b)^2$ can be of some help.