Isabelle/HOL Exercises
 Arithmetic

Magical Methods (Computing with Natural Numbers)

A book about Vedic mathematics describes three methods to make the calculation of squares of natural numbers easier:

- MM1: Numbers whose predecessors have squares that are known or can easily be calculated. For example:
Needed: 61^{2}
Given: $60^{2}=3600$
Observe: $61^{2}=3600+60+61=3721$
- MM2: Numbers greater than, but near 100. For example:

Needed: 102^{2}
Let $h=102-100=2, h^{2}=4$
Observe: $102^{2}=(102+h)$ shifted two places to the left $+h^{2}=10404$

- MM3: Numbers ending in 5. For example:

Needed: 85^{2}
Observe: $85^{2}=(8 * 9)$ appended to $25=7225$
Needed: 995^{2}
Observe: $995^{2}=(99 * 100)$ appended to $25=990025$

In this exercise we will show that these methods are not so magical after all!

- Based on MM1 define a function sq that calculates the square of a natural number.

```
consts
    sq :: "nat => nat"
primrec
    "sq 0 = 0"
    "sq (Suc n) = (sq n) + n + (Suc n)"
```

- Prove the correctness of $s q$ (i.e. $s q n=n * n$).

```
theorem MM1[simp]: "sq n = n * n"
    by (induct_tac n, auto)
```

- Formulate and prove the correctness of MM2.

Hints:

- Generalise MM2 for an arbitrary constant (instead of 100).
- Universally quantify all variables other than the induction variable.

```
lemma aux[rule_format]: "!m. \(m<=n \longrightarrow s q n=((n+(n-m)) * m)+s q(n-m) "\)
    apply (induct_tac \(n\), auto)
    apply (case_tac m, auto)
done
theorem MM2:" \(100<=n \Longrightarrow s q n=((n+(n-100)) * 100)+s q(n-100) "\)
    by (rule aux)
```

- Formulate and prove the correctness of MM3.

Hints:

- Try to formulate the property 'numbers ending in 5' such that it is easy to get to the rest of the number.
- Proving the binomial formula for $(a+b)^{2}$ can be of some help.
theorem MM3: "sq ((10 * n) + 5) = ((n * (Suc n)) * 100) + 25"
by (auto simp add: add_mult_distrib add_mult_distrib2)

