(* $Id: sol.thy,v 1.2 2004/11/23 15:14:34 webertj Exp $ Author: Farhad Mehta *) header {* Magical Methods (Computing with Natural Numbers) *} (*<*) theory sol imports Main begin (*>*) text{* A book about Vedic mathematics describes three methods to make the calculation of squares of natural numbers easier: \begin{itemize} \item {\em MM1}: Numbers whose predecessors have squares that are known or can easily be calculated. For example: \\ Needed: $61^2$ \\ Given: $60^2 = 3600$ \\ Observe: $61^2 = 3600 + 60 + 61 = 3721$ \item {\em MM2}: Numbers greater than, but near 100. For example: \\ Needed: $102^2$ \\ Let $h = 102 - 100 = 2$ , $h^2 = 4$ \\ Observe: $102^2 = (102+h)$ shifted two places to the left $ + h^2 = 10404$ \item {\em MM3}: Numbers ending in $5$. For example: \\ Needed: $85^2$ \\ Observe: $85^2 = (8 * 9)$ appended to $ 25 = 7225$ \\ Needed: $995^2$ \\ Observe: $995^2 = (99 * 100)$ appended to $ 25 = 990025 $ \end{itemize} In this exercise we will show that these methods are not so magical after all! \begin{itemize} \item Based on {\em MM1} define a function @{term "sq"} that calculates the square of a natural number. \end{itemize} *} consts sq :: "nat \ nat" primrec "sq 0 = 0" "sq (Suc n) = (sq n) + n + (Suc n)" text{* \begin{itemize} \item Prove the correctness of @{term "sq"} (i.e.\ @{term "sq n = n * n"}). \end{itemize} *} theorem MM1[simp]: "sq n = n * n" by (induct_tac n, auto) text{* \begin{itemize} \item Formulate and prove the correctness of {\em MM2}.\\ Hints: \begin{itemize} \item Generalise {\em MM2} for an arbitrary constant (instead of $100$). \item Universally quantify all variables other than the induction variable. \end{itemize} \end{itemize} *} lemma aux[rule_format]: "!m. m <= n \ sq n = ((n + (n-m))* m) + sq (n-m)" apply (induct_tac n, auto) apply (case_tac m, auto) done theorem MM2:" 100 <= n \ sq n = ((n + (n - 100))* 100) + sq (n - 100)" by (rule aux) text{* \begin{itemize} \item Formulate and prove the correctness of {\em MM3}.\\ Hints: \begin{itemize} \item Try to formulate the property `numbers ending in $5$' such that it is easy to get to the rest of the number. \item Proving the binomial formula for $(a+b)^2$ can be of some help. \end{itemize} \end{itemize} *} theorem MM3: "sq((10 * n) + 5) = ((n * (Suc n)) * 100) + 25" by (auto simp add: add_mult_distrib add_mult_distrib2) (*<*) end (*>*)