
Isabelle/HOL Exercises

Lists

Counting Occurrences

Define a function occurs, such that occurs x xs is the number of occurrences of the element
x in the list xs.

consts occurs :: "’a ⇒ ’a list ⇒ nat"

Prove or disprove (by counterexample) the lemmas that follow. You may have to prove ad-
ditional lemmas first. Use the [simp] -attribute only if the equation is truly a simplification
and is necessary for some later proof.

lemma "occurs a xs = occurs a (rev xs)"

lemma "occurs a xs <= length xs"

Function map applies a function to all elements of a list: map f [x1, . . .,xn] = [f x1, . . .,f

xn].

lemma "occurs a (map f xs) = occurs (f a) xs"

Function filter :: (’a ⇒ bool) ⇒ ’a list ⇒ ’a list is defined by

filter P [] = []

filter P (x # xs) = (if P x then x # filter P xs else filter P xs)

Find an expression e not containing filter such that the following becomes a true lemma,
and prove it:

lemma "occurs a (filter P xs) = e"

With the help of occurs, define a function remDups that removes all duplicates from a list.

consts remDups :: "’a list ⇒ ’a list"

Find an expression e not containing remDups such that the following becomes a true lemma,
and prove it:

lemma "occurs x (remDups xs) = e"

With the help of occurs define a function unique, such that unique xs is true iff every
element in xs occurs only once.

consts unique :: "’a list ⇒ bool"

Show that the result of remDups is unique.


