
Isabelle/HOL Exercises

Lists

consts
occurs :: "’a ⇒ ’a list ⇒ nat"

primrec
"occurs a [] = 0"

"occurs a (x#xs) = (if (x=a) then Suc(occurs a xs) else occurs a xs)"

lemma [simp]:"occurs a (xs @ ys) = occurs a xs + occurs a ys "

apply (induct_tac xs)

apply auto

done

lemma "occurs a xs = occurs a (rev xs)"

apply (induct_tac xs)

apply auto

done

lemma "occurs a xs <= length xs"

apply (induct_tac xs)

apply auto

done

lemma "occurs a (replicate n a) = n"

apply (induct_tac n)

apply auto

done

consts
areAll :: "’a list ⇒ ’a ⇒ bool"

primrec
"areAll [] a = True"

"areAll (x#xs) a = ((x=a) ∧ (areAll xs a))"

lemma "areAll xs a −→ occurs a xs = length xs"

apply (induct_tac xs)

apply auto

done

lemma "occurs a xs = length xs −→ areAll xs a"

— additional lemmas needed
apply (induct_tac xs)

apply auto

...

lemma l:"occurs a xs < Suc(length xs)"

apply (induct_tac xs)

apply auto

done

lemma a:"(a::nat) < b −→ (a ~= b)"

apply auto

done

lemma ne:"occurs a xs ~= Suc(length xs)"

apply (auto simp:l a)

done

lemma "occurs a xs = length xs −→ areAll xs a"

apply (induct_tac "xs")

apply (auto simp:ne)

done

consts
delall :: "’a ⇒ ’a list ⇒ ’a list"

primrec
"delall a [] = []"

"delall a (x#xs) = (if (x=a) then (delall a xs) else (x#delall a xs))"

lemma "occurs a (delall a xs) = 0"

apply (induct_tac xs)

apply auto

done

consts
del1 :: "’a ⇒ ’a list ⇒ ’a list"

primrec
"del1 a [] = []"

"del1 a (x#xs) = (if (x=a) then xs else (x#del1 a xs))"

2

lemma "Suc (occurs a (del1 a xs)) = occurs a xs"

— wrong; precondition needed
...

lemma "xs ~= [] −→ Suc (occurs a (del1 a xs)) = occurs a xs"

apply (induct_tac xs)

apply auto

— still wrong
...

lemma "0 < occurs a xs −→ Suc (occurs a (del1 a xs)) = occurs a xs"

apply (induct_tac xs)

apply auto

— correct!
done

consts
replace :: "’a ⇒ ’a ⇒ ’a list ⇒ ’a list"

primrec
"replace a b [] = []"

"replace a b (x#xs) = (if (x=a) then (b#(replace a b xs))

else (x#(replace a b xs)))"

lemma "occurs a xs = occurs b (replace a b xs)"

apply (induct_tac xs)

apply auto

— wrong; precondition needed
...

lemma "occurs b xs = 0 ∨ a=b −→ occurs a xs = occurs b (replace a b xs)"

apply (induct_tac xs)

apply auto

done

consts
remDups :: "’a list ⇒ ’a list"

primrec
"remDups [] = []"

"remDups (x#xs) = (if (0 < occurs x xs) then (remDups xs)

else (x#(remDups xs)))"

3

lemma h:"occurs x xs = 0 −→ occurs x (remDups xs) = 0"

apply (induct_tac xs)

apply auto

done

lemma "occurs x (remDups xs) <= 1"

apply (induct_tac xs)

apply (auto simp:h)

done

consts
unique :: "’a list ⇒ bool"

primrec
"unique [] = True"

"unique (x#xs) = (if (occurs x xs = 0) then (unique xs) else False)"

lemma "unique(remDups xs)"

apply (induct_tac xs)

apply (auto simp:h)

done

end

4

