Isabelle/HOL Exercises
 Lists

Searching in Lists

Define a function first_pos that computes the index of the first element in a list that satisfies a given predicate:

```
first_pos :: "('a # bool) # 'a list # nat"
```

The smallest index is 0 . If no element in the list satisfies the predicate, the behaviour of first_pos should be as described below.
primrec
"first_pos P [] = 0"
"first_pos P (x \# xs) = (if P x then 0 else Suc (first_pos P xs))"
Verify your definition by computing

- the index of the first number equal to 3 in the list [1::nat, $3,5,3,1]$,
- the index of the first number greater than 4 in the list [1::nat, 3, 5, 7],
- the index of the first list with more than one element in the list [[], [1, 2], [3]].

Note: Isabelle does not know the operators > and \geq. Use < and \leq instead.

```
lemma "first_pos ( }\lambda\textrm{x}.\textrm{x = 3) [1::nat, 3, 5, 3, 1] = 1"
    by auto
lemma "first_pos (\lambda x. 4 < x) [1::nat, 3, 5, 7] = 2"
    by auto
lemma "first_pos (\lambda x. 1 < length x) [[], [1, 2], [3]] = 1"
    by auto
```

Prove that first_pos returns the length of the list if and only if no element in the list satisfies the given predicate.

```
lemma "list_all ( \(\lambda \mathrm{x} . \neg P \mathrm{x}\) ) xs = (first_pos \(P\) xs = length xs)"
    apply (induct xs)
    apply auto
done
```

Now prove:

```
lemma "list_all ( }\lambda\mathrm{ x. ᄀ P x) (take (first_pos P xs) xs)"
    apply (induct xs)
    apply auto
done
```

How can first_pos (λ x. P x $\vee Q x$) xs be computed from first_pos P xs and first_pos Q xs? Can something similar be said for the conjunction of P and Q ? Prove your statement(s).

```
lemma "first_pos ( \(\lambda \mathrm{x} . P \mathrm{x} \vee \mathrm{Q}\) ) xs \(=\min \left(f i r s t_{-} p o s P \mathrm{xs}\right)\left(f i r s t_{-} p o s Q x s\right)\) "
    apply (induct xs)
    apply auto
done
```

For \wedge, only a lower bound can be given.

```
lemma "max (first_pos P xs) (first_pos Q xs) \leq first_pos ( }\lambda\textrm{x}. P\textrm{x}|\wedgeQ\textrm{x})\textrm{xs"
    apply (induct xs)
    apply auto
done
```

Suppose P implies Q. What can be said about the relation between first_pos P xs and first_pos Q xs? Prove your statement.

```
lemma " \((\forall x . P x \longrightarrow Q x) \longrightarrow f i r s t_{-} p o s Q x s \leq f i r s t_{-} p o s P x s "\)
    apply (induct xs)
    apply auto
done
```

Define a function count that counts the number of elements in a list that satisfy a given predicate.

```
count :: "('a # bool) # 'a list }=>\mathrm{ n nat"
```


primrec

"count $P[]=0 "$
$"$ count $P(x \# x s)=(i f P x$ then Suc (count P xs) else (count P xs))"

Show: The number of elements with a given property stays the same when one reverses a list with rev. The proof will require a lemma.

```
lemma count_append[simp]: "count P (xs @ ys) = count P xs + count P ys"
    apply (induct xs)
    apply auto
done
```

lemma "count P xs $=\operatorname{count} P$ (rev xs)"
apply (induct xs)
apply auto
done
Find and prove a connection between the two functions filter and count.
lemma "length (filter P xs) $=$ count P xs"
apply (induct xs)
apply auto
done

