
Isabelle/HOL Exercises

Lists

Quantifying Lists

Define a universal and an existential quantifier on lists using primitive recursion. Expression
alls P xs should be true iff P x holds for every element x of xs, and exs P xs should be
true iff P x holds for some element x of xs.

consts
alls :: "(’a ⇒ bool) ⇒ ’a list ⇒ bool"

exs :: "(’a ⇒ bool) ⇒ ’a list ⇒ bool"

primrec
"alls P [] = True"

"alls P (x#xs) = (P x ∧ alls P xs)"

primrec
"exs P [] = False"

"exs P (x#xs) = (P x ∨ exs P xs)"

Prove or disprove (by counterexample) the following theorems. You may have to prove
some lemmas first.

Use the [simp] -attribute only if the equation is truly a simplification and is necessary for
some later proof.

lemma "alls (λx. P x ∧ Q x) xs = (alls P xs ∧ alls Q xs)"

apply (induct "xs")

apply auto

done

lemma alls_append: "alls P (xs @ ys) = (alls P xs ∧ alls P ys)"

apply (induct "xs")

apply auto

done

lemma "alls P (rev xs) = alls P xs"

apply (induct "xs")

apply (auto simp add: alls_append)

done



lemma "exs (λx. P x ∧ Q x) xs = (exs P xs ∧ exs Q xs)"

quickcheck
...

A possible counterexample is: P = even, Q = odd, xs = [0, 1]

lemma "exs P (map f xs) = exs (P o f) xs"

apply (induct "xs")

apply auto

done

lemma exs_append: "exs P (xs @ ys) = (exs P xs ∨ exs P ys)"

apply (induct "xs")

apply auto

done

lemma "exs P (rev xs) = exs P xs"

apply (induct "xs")

apply (auto simp add: exs_append)

done

Find a (non-trivial) term Z such that the following equation holds:

lemma "exs (λx. P x ∨ Q x) xs = Z"

lemma "exs (λx. P x ∨ Q x) xs = (exs P xs ∨ exs Q xs)"

apply (induct "xs")

apply auto

done

Express the existential via the universal quantifier – exs should not occur on the right-hand
side:

lemma "exs P xs = Z"

lemma "exs P xs = (¬ alls (λx. ¬ P x) xs)"

apply (induct "xs")

apply auto

done

Define a primitive-recursive function is_in x xs that checks if x occurs in xs. Now express
is_in via exs :

consts
is_in :: "’a ⇒ ’a list ⇒ bool"

primrec
"is_in x [] = False"

2



"is_in x (z#zs) = (x=z ∨ is_in x zs)"

lemma "is_in a xs = exs (λx. x=a) xs"

apply (induct "xs")

apply auto

done

Define a primitive-recursive function nodups xs that is true iff xs does not contain dupli-
cates, and a function deldups xs that removes all duplicates. Note that deldups [x, y,

x] (where x and y are distinct) can be either [x, y] or [y, x].

consts
nodups :: "’a list ⇒ bool"

deldups :: "’a list ⇒ ’a list"

primrec
"nodups [] = True"

"nodups (x#xs) = (¬ is_in x xs ∧ nodups xs)"

primrec
"deldups [] = []"

"deldups (x#xs) = (if is_in x xs then deldups xs else x # deldups xs)"

Prove or disprove (by counterexample) the following theorems.

lemma "length (deldups xs) <= length xs"

apply (induct "xs")

apply auto

done

lemma is_in_deldups: "is_in a (deldups xs) = is_in a xs"

apply (induct "xs")

apply auto

done

lemma "nodups (deldups xs)"

apply (induct "xs")

apply (auto simp add: is_in_deldups)

done

lemma "deldups (rev xs) = rev (deldups xs)"

quickcheck
...

A possible counterexample is: xs = [0, 1, 0]

3


