
Isabelle/HOL Exercises

Lists

Sets as Lists

Finite sets can obviously be implemented by lists. In the following, you will be asked to
implement the set operations union, intersection and difference and to show that these
implementations are correct. Thus, for a function

list_union :: "[’a list, ’a list] ⇒ ’a list"

to be defined by you it has to be shown that

lemma "set (list_union xs ys) = set xs ∪ set ys"

In addition, the functions should be space efficient in the sense that one obtains lists without
duplicates (distinct) whenever the parameters of the functions are duplicate-free. Thus,
for example,

lemma [rule_format]:

"distinct xs −→ distinct ys −→ (distinct (list_union xs ys))"

Hint: distinct is defined in List.thy. Also the function mem and the lemma set_mem_eq

may be useful.

Quantification over Sets

Define a (non-trivial) set S such that the following proposition holds:

lemma "((∀ x ∈ A. P x) ∧ (∀ x ∈ B. P x)) −→ (∀ x ∈ S. P x)"

Define a (non-trivial) predicate P such that

lemma "∀ x ∈ A. P (f x) =⇒ ∀ y ∈ f ‘ A. Q y"


