
Isabelle/HOL Exercises

Lists

Sets as Lists

Finite sets can obviously be implemented by lists. In the following, you will be asked to
implement the set operations union, intersection and difference and to show that these
implementations are correct. Thus, for a function

list_union :: "[’a list, ’a list] ⇒ ’a list"

primrec
"list_union xs [] = xs"

"list_union xs (y#ys) = (let result = list_union xs ys in if y mem result then

result else y#result)"

to be defined by you it has to be shown that

lemma "set (list_union xs ys) = set xs ∪ set ys"

apply (induct "ys")

apply simp

apply (simp add: Let_def mem_iff)

apply auto

done

In addition, the functions should be space efficient in the sense that one obtains lists without
duplicates (distinct) whenever the parameters of the functions are duplicate-free. Thus,
for example,

lemma [rule_format]:

"distinct xs −→ distinct ys −→ (distinct (list_union xs ys))"

apply (induct "ys")

apply (auto simp add: Let_def mem_iff)

done

Hint: distinct is defined in List.thy. Also the function mem and the lemma set_mem_eq

may be useful.

We omit the definitions and correctness proofs for set intersection and set difference.



Quantification over Sets

Define a (non-trivial) set S such that the following proposition holds:

lemma "((∀ x ∈ A. P x) ∧ (∀ x ∈ B. P x)) −→ (∀ x ∈ S. P x)"

lemma "((∀ x ∈ A. P x) ∧ (∀ x ∈ B. P x)) −→ (∀ x ∈ A∪B. P x)"

by auto

Define a (non-trivial) predicate P such that

lemma "∀ x ∈ A. P (f x) =⇒ ∀ y ∈ f ‘ A. Q y"

lemma "∀ x ∈ A. Q (f x) =⇒ ∀ y ∈ f ‘ A. Q y"

by auto
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