
Isabelle/HOL Exercises

Lists

SNOC

Define a primitive recursive function snoc that appends an element at the right end of a
list. Do not use @ itself.

consts
snoc :: "’a list => ’a => ’a list"

primrec
"snoc [] a = [a]"

"snoc (x#xs) a = x # snoc xs a"

lemma snoc_append: "snoc xs a = xs @ [a]"

apply (induct "xs")

apply auto

done

Prove the following theorem:

theorem rev_cons: "∀ x. rev (x # xs) = snoc (rev xs) x"

apply (induct "xs")

apply (auto simp add: snoc_append)

done

Hint: you need to prove a suitable lemma first.


