
Isabelle/HOL Exercises

Lists

Summation, Flattening

Define a function sum, which computes the sum of elements of a list of natural numbers.

sum :: "nat list ⇒ nat"

Then, define a function flatten which flattens a list of lists by appending the member
lists.

flatten :: "’a list list ⇒ ’a list"

Test your functions by applying them to the following example lists:

lemma "sum [2::nat, 4, 8] = x"

lemma "flatten [[2::nat, 3], [4, 5], [7, 9]] = x"

Prove the following statements, or give a counterexample:

lemma "length (flatten xs) = sum (map length xs)"

lemma sum_append: "sum (xs @ ys) = sum xs + sum ys"

lemma flatten_append: "flatten (xs @ ys) = flatten xs @ flatten ys"

lemma "flatten (map rev (rev xs)) = rev (flatten xs)"

lemma "flatten (rev (map rev xs)) = rev (flatten xs)"

lemma "list_all (list_all P) xs = list_all P (flatten xs)"

lemma "flatten (rev xs) = flatten xs"

lemma "sum (rev xs) = sum xs"

Find a (non-trivial) predicate P which satisfies

lemma "list_all P xs −→ length xs ≤ sum xs"

Define, by means of primitive recursion, a function list_exists which checks whether an
element satisfying a given property is contained in the list:

list_exists :: "(’a ⇒ bool) ⇒ (’a list ⇒ bool)"

Test your function on the following examples:

lemma "list_exists (λ n. n < 3) [4::nat, 3, 7] = b"

lemma "list_exists (λ n. n < 4) [4::nat, 3, 7] = b"

Prove the following statements:

lemma list_exists_append:



"list_exists P (xs @ ys) = (list_exists P xs ∨ list_exists P ys)"

lemma "list_exists (list_exists P) xs = list_exists P (flatten xs)"

You could have defined list_exists only with the aid of list_all. Do this now, i.e. define
a function list_exists2 and show that it is equivalent to list_exists.

2


