
Isabelle/HOL Exercises

Lists

Recursive Functions and Induction: Zip

Read the chapter about recursive definitions in the “Tutorial on Isabelle/HOL” (recdef,
Chapter 3.5).

In this exercise you will define a function Zip that merges two lists by interleaving.
Examples: Zip [a1, a2, a3] [b1, b2, b3] = [a1, b1, a2, b2, a3, b3] and Zip [a1]

[b1, b2, b3] = [a1, b1, b2, b3].

Use three different approaches to define Zip :

1. by primitive recursion on the first list,

2. by primitive recursion on the second list,

3. by total recursion (using recdef).

consts zip1 :: "’a list ⇒ ’a list ⇒ ’a list"

consts zip2 :: "’a list ⇒ ’a list ⇒ ’a list"

consts zipr :: "(’a list × ’a list) ⇒ ’a list"

primrec
"zip1 [] ys = ys"

"zip1 (x#xs) ys = (case ys of [] ⇒ (x#xs) | z#zs ⇒ x#z#(zip1 xs zs))"

primrec
"zip2 xs [] = xs"

"zip2 xs (y#ys) = (case xs of [] => (y#ys) | z#zs => z # y # zip2 zs ys)"

recdef zipr "measure (λ(xs,ys). length xs + length ys)"

"zipr ([],ys) = ys"

"zipr (xs,[]) = xs"

"zipr ((x#xs),ys) = x#zipr(ys,xs)"

Show that all three versions of Zip are equivalent.

lemma "∀ ys. zip1 xs ys = zip2 xs ys"

apply (induct xs)



apply auto

apply (case_tac ys)

apply auto

apply (case_tac ys)

apply auto

done

lemma [simp]: "zipr (xs,[]) = xs"

apply (case_tac xs)

apply auto

done

lemma [simp]: "zipr ((x#xs),ys) = x#zipr(ys,xs)"

apply (case_tac ys)

apply auto

done

lemma "∀ xs. zip2 xs ys = zipr (xs,ys)"

apply (induct ys)

apply auto

apply (case_tac xs)

apply auto

done

lemma "∀ ys. zipr (xs,ys) = zip1 xs ys"

apply (induct xs)

apply auto

apply (case_tac ys)

apply auto

done

Show that zipr distributes over append.

lemma zipr_append:

"∀ u q v. length p = length u ∧ length q = length v −→
zipr(p@q,u@v) = zipr(p,u) @ zipr(q,v)"

apply (induct p)

apply auto

apply (case_tac u)

apply auto

done

lemma " [[length p = length u; length q = length v ]] =⇒
zipr(p@q,u@v) = zipr(p,u) @ zipr(q,v)"

2



by (simp add: zipr_append)

Note: For recdef, the order of your equations is relevant. If equations overlap, they will be
disambiguated before they are added to the logic. You can have a look at these equations
using thm zipr.simps.

3


