Isabelle/HOL Exercises Logic and Sets

Elimination of Connectives

In classical propositional logic, the connectives =, \lor , \neg can be replaced by \longrightarrow , \land , *False*. Define corresponding simplification rules as lemmas and prove their correctness. (You may use automated proof tactics.)

lemma equiv_conel: "(A = B) = ((A \longrightarrow B) \land (B \longrightarrow A))" by iprover lemma or_conel: "(A \lor B) = (\neg (\neg A \land \neg B))" by blast lemma not_conel: "(\neg A) = (A \longrightarrow False)" by blast

What is the result of your translation for the formula $A \vee (B \wedge C) = A$? (You can use Isabelle's simplifier to compute the result by using the simplifier's only option.)

Stating $A \lor (B \land C) = A$ as a lemma and application of (simp only: equiv_conel or_conel not_conel) results in the simplified goal $(A \longrightarrow False) \land ((B \land C \longrightarrow A) \land (A \longrightarrow B \land C) \longrightarrow False) \longrightarrow False.$