Isabelle/HOL Exercises
 Logic and Sets

Elimination of Connectives

In classical propositional logic, the connectives $=, \vee, \neg$ can be replaced by \longrightarrow, \wedge, False. Define corresponding simplification rules as lemmas and prove their correctness. (You may use automated proof tactics.)
lemma equiv_conel: " $(A=B)=((A \longrightarrow B) \wedge(B \longrightarrow A)) "$
by iprover
lemma or_conel: " $(A \vee B)=(\neg(\neg A \wedge \neg B)) "$
by blast
lemma not_conel: " $(\neg A)=(A \longrightarrow$ False)"
by blast
What is the result of your translation for the formula $A \vee(B \wedge C)=A$? (You can use Isabelle's simplifier to compute the result by using the simplifier's only option.)

Stating $A \vee(B \wedge C)=A$ as a lemma and application of
(simp only: equiv_conel or_conel not_conel)
results in the simplified goal
$(A \longrightarrow F a l s e) \wedge((B \wedge C \longrightarrow A) \wedge(A \longrightarrow B \wedge C) \longrightarrow F a l s e) \longrightarrow$ False.

