Isabelle/HOL Exercises
 Logic and Sets

A Riddle: Rich Grandfather

First prove the following formula, which is valid in classical predicate logic, informally with pen and paper. Use case distinctions and/or proof by contradiction.

If every poor man has a rich father,
then there is a rich man who has a rich grandfather.

```
theorem
    "\forallx. ᄀ rich x \longrightarrow rich (father x) \Longrightarrow
    \existsx. rich (father (father x)) ^ rich x"
```


Proof

(1) We first show: $\exists x$. rich x. Proof by contradiction.

Assume \neg ($\exists \mathrm{x}$. rich x).
Then $\forall x$. ᄀ rich x .
We consider an arbitrary y with \neg rich y .
Then rich (father y).
(2) Now we show the theorem.

Proof by cases.
Case 1: rich (father (father x)).
We are done.
Case 2: \neg rich (father (father x)).
Then rich (father (father (father x))).
Also rich (father x),
because otherwise rich (father (father x)).
qed

Now prove the formula in Isabelle using a sequence of rule applications (i.e. only using the methods rule, erule and assumption).

theorem

$" \forall x$. \neg rich $x \longrightarrow$ rich (father $x) \Longrightarrow$
$\exists x$. rich (father (father x)) \wedge rich $x^{\prime \prime}$

```
apply (rule classical)
apply (rule exI)
apply (rule conjI)
    apply (rule classical)
    apply (rule allE) apply assumption
    apply (erule impE) apply assumption
    apply (erule notE)
    apply (rule exI)
    apply (rule conjI) apply assumption
    apply (rule classical)
    apply (erule allE)
    apply (erule notE)
    apply (erule impE) apply assumption
    apply assumption
apply (rule classical)
apply (rule allE) apply assumption
apply (erule impE) apply assumption
apply (erule notE)
apply (rule exI)
apply (rule conjI) apply assumption
apply (rule classical)
apply (erule allE)
apply (erule notE)
apply (erule impE) apply assumption
apply assumption
done
```

Here is a proof in Isar that resembles the informal reasoning above:

```
theorem rich_grandfather: " \(\forall \mathrm{x} . \neg\) rich \(\mathrm{x} \longrightarrow\) rich (father x ) \(\Longrightarrow\)
    \(\exists \mathrm{x} . \operatorname{rich} \mathrm{x} \wedge \operatorname{rich}(f a t h e r(f a t h e r \mathrm{x}))^{\prime}\)
proof -
    assume a: " \(\forall \mathrm{x}\). ᄀ rich \(\mathrm{x} \longrightarrow\) rich (father x )"
```

(1)

```
have "\existsx. rich x"
    proof (rule classical)
        fix y
    assume "\neg (\existsx. rich x)"
    then have "\forallx. \neg rich x" by simp
    then have "\neg rich y" by simp
    with a have "rich (father y)" by simp
```

```
    then show ?thesis by rule
    qed
    then obtain x where x: "rich x" by auto
```

(2)

```
show ?thesis
    proof cases
        assume "rich (father (father x))"
        with x show ?thesis by auto
    next
        assume b: "\neg rich (father (father x))"
        with a have "rich (father (father (father x)))" by simp
        moreover have "rich (father x)"
        proof (rule classical)
            assume "\neg rich (father x)"
            with a have "rich (father (father x))" by simp
            with b show ?thesis by contradiction
        qed
        ultimately show ?thesis by auto
    qed
qed
```

