Isabelle/HOL Exercises
 Logic and Sets

Context-Free Grammars

This exercise is concerned with context-free grammars (CFGs). Please read section 7.4 in the tutorial which explains how to model CFGs as inductive definitions. Our particular example is about defining valid sequences of parentheses.

Two grammars

The most natural definition of valid sequences of parentheses is this:

$$
S \quad \rightarrow \quad \varepsilon \quad\left|\quad{ }^{\prime}\left({ }^{\prime} S^{\prime}\right)^{\prime} \quad\right| \quad S S
$$

where ε is the empty word.
A second, somewhat unusual grammar is the following one:

$$
T \rightarrow \varepsilon \mid T^{\prime}\left({ }^{\prime} T^{\prime}\right)^{\prime}
$$

Model both grammars as inductive sets S and T and prove $S=T$.
The alphabet:
datatype alpha $=A \mid B$
Standard grammar:
inductive_set S :: "alpha list set" where
S1: "[] : S" |
S2: "w : S $\Longrightarrow A \# w \mathbb{C B}]$: S" ।
S3: "v : S $\Longrightarrow \mathrm{w}: S \Longrightarrow$ v @ w : S"
declare S1 [iff] S2[intro!,simp]
Nonstandard grammar:
inductive_set T :: "alpha list set" where
T1: "[] : T" |
T23: "v : T $\Longrightarrow \mathrm{w}: T \Longrightarrow \mathrm{v}$ @ A \# w @ [B]: T"

```
declare T1 [iff]
T is a subset of S:
lemma T2S: "W : T \Longrightarrow w : S"
    apply(erule T.induct)
        apply simp
    apply(blast intro: S3)
done
S is a subset of T:
lemma T2: "w : T\Longrightarrow A#w@[B] : T"
    using T23[where v = "[]"] by simp
lemma T3: "v : T \Longrightarrow u : T \Longrightarrow u@v : T"
    apply(erule T.induct)
        apply fastsimp
    apply(simp add: append_assoc[symmetric] del:append_assoc)
    apply(blast intro: T23)
done
lemma S2T: "W : S \Longrightarrow w : T"
    apply(erule S.induct)
                apply simp
            apply(blast intro: T2)
    apply(blast intro: T3)
done
S = T:
lemma "S = T"
    by(blast intro: S2T T2S)
```


A recursive function

Instead of a grammar, we can also define valid sequences of parentheses via a test function: traverse the word from left to right while counting how many closing parentheses are still needed. If the counter is 0 at the end, the sequence is valid.

Define this recursive function and prove that a word is in S iff it is accepted by your function. The \Longrightarrow direction is easy, the other direction more complicated.

```
consts balanced :: "alpha list * nat # bool"
```

recdef balanced "measure $(\%(x s, n)$. length $x s) "$

```
"balanced ([], 0) = True"
"balanced (A#w, n) = balanced(w,Suc n)"
"balanced (B#w, Suc n) = balanced(w,n)"
"balanced (w, n) = False"
```

Correctness of the recognizer w.r.t. S :
lemma [simp]: "balanced(w,n) \Longrightarrow balanced(w@[B],Suc n)"
apply (induct w n rule:balanced.induct)
apply simp_all
done
lemma [simp]: "【balanced (v, n); balanced (w, 0) 】 \Longrightarrow balanced (v @ w, n)" apply (induct $v n$ rule:balanced.induct)
apply simp_all
done
lemma "w : S \Longrightarrow balanced $(\mathrm{w}, 0$)"
apply (erule S.induct)
apply simp_all
done
Completeness of the recognizer w.r.t. S :
lemma [iff]: " $A, B]$: S" using $S 2[$ where $w="[] "]$ by simp
lemma $A B$: assumes $u: " u \in S "$ shows " $\wedge v \mathrm{w} \cdot \mathrm{u}=\mathrm{v} @_{\mathrm{w}} \Longrightarrow \mathrm{v} @ A \neq B$ \# w $\in S$ "
using u
proof(induct)
case $S 1$ thus ?case by simp
next
case (S2 u)
have $u S: ~ " u \in S "$ and
IH: " $\wedge v \mathrm{w} . \mathrm{u}=\mathrm{v} @ \mathrm{w} \Longrightarrow \mathrm{v} @ A \# B \# \mathrm{w} \in S "$ and asm: "A \# u @ $[B]=v @$ w".
show "v @ A \# B \# w $\in S$ "
proof (cases v)
case Nil
hence ${ }^{W}=A$ \# u © [B]" using asm by simp
hence "w $\in S$ " using $u S$ by simp
hence " $[A, B] @$ w $\in S$ " by (blast intro:S3)
thus ?thesis using Nil by simp
next
case (Cons x v')

```
    show ?thesis
    proof (cases w rule:rev_cases)
        case Nil
        from uS have "(A # u @ [B]) @ [A,B] \in S" by(blast intro:S3)
        thus ?thesis using Nil Cons asm by auto
        next
            case (snoc w' y)
            hence u: "u = v' @ w'" and [simp]: "x = A & y = B"
                using Cons asm by auto
            from u have "V' @ A # B # w' \inS" by(rule IH)
            hence "A # (v' @ A # B # w') @ [B] \in S" by(rule S.S2)
            thus ?thesis using Cons snoc by auto
        qed
    qed
next
    case (S3 v' w')
    have v'S: "v' \in S" and w'S: "w' \in S"
        and IHv: "\v w. v' = v @ w \Longrightarrow v @ A # B # w \in S"
        and IHw: "\v w. w' = v @ w \Longrightarrow v @ A # B # w \in S"
        and asm: "v' @ w' = v @ w" .
    then obtain r where "V' = v @ r ^ r @ w' = w V V'@ r = v ^ W'= r @ w"
        (is "?A \vee ?B")
        by (auto simp:append_eq_append_conv2)
    thus "v @ A # B # w \inS"
    proof
        assume A: ?A
        hence "v @ A # B # r \in S" using IHv by blast
        hence "(v @ A # B # r) @ w' \in S" using w'S by(rule S.S3)
        thus ?thesis using A by auto
    next
        assume B: ?B
        hence "r @ A # B # w \in S" using IHw by blast
        with v'S have "V' @ (r @ A # B # w) \in S" by(rule S.S3)
        thus ?thesis using B by auto
    qed
qed
```

The same lemma for friends of the apply style:

```
lemma "u \in S \Longrightarrow ALL v w. u = v@w \longrightarrow v @ A # B # w \in S"
apply(erule S.induct)
    apply simp
apply(rename_tac u)
apply (clarsimp simp:Cons_eq_append_conv)
```

```
    apply(rule conjI)
    apply (clarsimp)
    apply(subgoal_tac "[A,B] @ (A # u @ [B]) : S")
        apply (simp)
    apply(blast intro:S3)
    apply(clarsimp simp:append_eq_append_conv2 Cons_eq_append_conv)
    apply(rename_tac w w1 w2)
    apply(erule disjE)
    apply clarsimp
    apply(subgoal_tac "A # (w1 @ A # B # w2) @ [B] : S")
        apply simp
    apply(blast intro:S3)
    apply clarsimp
    apply(erule disjE)
    apply clarsimp
    apply(subgoal_tac "A # (u @ [A,B]) @ [B] : S")
    apply (simp)
    apply(blast intro:S3)
apply clarsimp
apply(subgoal_tac "(A # u @ [B]) @ [A,B] : S")
    apply (simp)
apply(blast intro:S3)
apply(clarsimp simp:append_eq_append_conv2)
apply(rename_tac u v w x y)
apply(erule disjE)
    apply clarsimp
    apply(subgoal_tac "(w @ A # B # y) @ v : S")
    apply (simp)
    apply(blast intro:S3)
apply clarsimp
apply(blast intro:S3)
done
lemma "balanced(w,n) \Longrightarrow replicate n A @ w : S"
    apply (induct w n rule:balanced.induct)
    apply (simp_all add:replicate_app_Cons_same)
    apply (simp add:replicate_app_Cons_same[symmetric])
    apply (simp add: AB)
done
```

