Isabelle/HOL Exercises
 Projects

The Euclidean Algorithm - Inductively

Rules without base case

Show that the following

```
inductive_set evenempty :: "nat set" where
Add2Ie: "n \in evenempty \Longrightarrow Suc(Suc n) \in evenempty"
```

defines the empty set:
lemma evenempty_empty: "evenempty = \{\}"

The Euclidean algorithm

Define inductively the set gcd, which characterizes the greatest common divisor of two natural numbers:

```
gcd :: "(nat > nat > nat) set"
```

Here, $(a, b, g) \in \operatorname{gcd}$ means that g is the gcd of a und b. The definition should closely follow the Euclidean algorithm.

Reminder: The Euclidean algorithm repeatedly subtracts the smaller from the larger number, until one of the numbers is 0 . Then, the other number is the gcd.

Now, compute the gcd of 15 and 10:
lemma "(15, 10, ?g) $\in \operatorname{gcd} "$
How does your algorithm behave on special cases as the following?
lemma " (0, 0, ?g) $\in \operatorname{gcd} "$
Show that the gcd is really a divisor (for the proof, you need an appropriate lemma):
lemma gcd_divides: "(a,b,g) $\in \operatorname{gcd} \Longrightarrow g d v d$ a \wedge g dvd b"
Show that the gcd is the greatest common divisor:

```
lemma gcd_greatest [rule_format]: "(a,b,g) \in gcd \Longrightarrow
    0<a \vee 0 < b \longrightarrow ( }\forall\textrm{d}.d\mathrm{ dvd a }\longrightarrowd dvd b \longrightarrowd \leqg)"
```

Here as well, you will have to prove a suitable lemma. What is the precondition $0<a \vee$ $0<b$ good for?

So far, we have only shown that gcd is correct, but your algorithm might not compute a result for all values a, b. Thus, show completeness of the algorithm:
lemma gcd_defined: " \forall a b. $\exists \mathrm{g} .(\mathrm{a}, \mathrm{b}, \mathrm{g}) \in \operatorname{gcd}$ "
The following lemma, proved by course-of-value recursion over n, may be useful. Why does standard induction over natural numbers not work here?

```
lemma gcd_defined_aux [rule_format]:
    "\forall a b. (a + b) \leqn\longrightarrow(\existsg. (a, b, g) \in gcd)"
    apply (induct rule: nat_less_induct)
    apply clarify
```

The idea is to show that $g c d$ yields a result for all a, b whenever it is known that $g c d$ yields a result for all a^{\prime}, b^{\prime} whose sum is smaller than $a+b$.
In order to prove this lemma, make case distinctions corresponding to the different clauses of the algorithm, and show how to reduce computation of gcd for a, b to computation of gcd for suitable smaller a^{\prime}, b^{\prime}.

