Isabelle/HOL Exercises
 Projects

The Euclidean Algorithm - Inductively

Rules without base case

Show that the following
inductive_set evenempty :: "nat set" where
Add2Ie: " $n \in$ evenempty \Longrightarrow Suc(Suc n) \in evenempty"
defines the empty set:
lemma evenempty_empty: "evenempty = \{\}"
by (auto elim: evenempty.induct)

The Euclidean algorithm

Define inductively the set $g c d:(a, b, g) \in g c d$ means that g is the greatest common divisor of a und b. The definition should closely follow the Euclidean algorithm.
Reminder: The Euclidean algorithm repeatedly subtracts the smaller from the larger number, until one of the numbers is 0 . Then, the other number is the gcd.

```
inductive_set gcd :: "(nat x nat x nat) set" where
gcdZero: "(u, 0, u) \in gcd" |
gcdStep: "\llbracket(u - v, v, g) \in gcd; 0 < v; v \leq u \rrbracket \Longrightarrow (u, v, g) \in gcd" |
gcdSwap: "\llbracket(v, u, g) \in gcd; u < v \rrbracket \Longrightarrow (u, v, g) \in gcd"
```

Now, compute the gcd of 15 and 10:

```
lemma "(15, 10, ?g) \in gcd"
    apply (rule gcdStep) apply simp
    apply (rule gcdSwap)
    apply (rule gcdStep) apply simp
    apply (rule gcdStep) apply simp
    apply (rule gcdSwap)
    apply (rule gcdZero)
    apply simp+
done
```

How does your algorithm behave on special cases as the following?

```
lemma "(0, 0, ?g) \(\in \operatorname{gcd} "\)
by (rule gcdZero)
Show that the gcd is really a divisor (for the proof, you need an appropriate lemma):
lemma gcd_divides: \("(a, b, g) \in \operatorname{gcd} \Longrightarrow g d v d a \wedge g\) dvd b"
lemma dvd_minus: "【 v \(\leq u ;\) (g::nat) \(d v d u-v ; g d v d v \rrbracket \Longrightarrow g d v d u "\)
    apply (clarsimp simp add: dvd_def)
    apply (rule_tac \(x=" k+k a "\) in exI)
    apply (simp add: add_mult_distrib2)
done
lemma gcd_divides: " \((a, b, g) \in g c d \Longrightarrow g d v d a \wedge g d v d\) b"
    apply (induct rule: gcd.induct)
    apply simp
    apply (simp add: dvd_minus)
    apply simp
done
```

Show that the gcd is the greatest common divisor：

```
lemma gcd_greatest [rule_format]: "(a,b,g) \(\in\) gcd \(\Longrightarrow\)
    \(0<a \vee 0<b \longrightarrow(\forall d . d d v d a \longrightarrow d d v d b \longrightarrow d \leq g) \prime\)
lemma dvd_leq: "【 \(0<v ;(d:: n a t) d v d v \rrbracket \Longrightarrow d \leq v "\)
    by (clarsimp simp add: dvd_def)
```

lemma dvd_minus2: "【 (d::nat) dvd u; d dvd v 】 $\Longrightarrow d$ dvd u - v"
apply (clarsimp simp add: dvd_def)
apply (rule_tac $x=" k-k a "$ in exI)
apply (simp add: diff_mult_distrib2)
done
lemma gcd_greatest [rule_format]: "(a,b,g) $\in \operatorname{gcd} \Longrightarrow$
$0<a \vee 0<b \longrightarrow(\forall d . d d v d a \longrightarrow d d v d b \longrightarrow d \leq g) \prime$
apply (induct rule: gcd.induct)
apply (clarsimp simp add: dvd_leq)
apply clarsimp
apply (case_tac "v = u")
apply simp
apply (blast dest: dvd_minus2)+
done

Here as well，you will have to prove a suitable lemma．What is the precondition $0<a \vee$ $0<\mathrm{b}$ good for？

So far, we have only shown that gcd is correct, but your algorithm might not compute a result for all values a, b. Thus, show completeness of the algorithm:
lemma gcd_defined: " \forall a b. \exists g. (a, b, g) \in gcd"
The following lemma, proved by course-of-value recursion over n, may be useful. Why does standard induction over natural numbers not work here?

```
lemma gcd_defined_aux [rule_format]:
    "\forall a b. (a + b) \leqn \longrightarrow (\existsg. (a, b, g) \in gcd)"
    apply (induct rule: nat_less_induct)
    apply clarify
```

The idea is to show that gcd yields a result for all a, b whenever it is known that gcd yields a result for all a^{\prime}, b^{\prime} whose sum is smaller than $a+b$.

In order to prove this lemma, make case distinctions corresponding to the different clauses of the algorithm, and show how to reduce computation of gcd for a, b to computation of gcd for suitable smaller a^{\prime}, b^{\prime}.

```
lemma gcd_defined_aux [rule_format]:
    "\forallab. (a + b) \leqn\longrightarrow(\existsg. (a, b, g) \ingcd)"
apply (induct rule: nat_less_induct)
apply clarify
apply (case_tac b)
- Application of gcdZero
apply simp
apply (rule exI)
apply (rule gcdZero)
apply (rename_tac n a b b')
apply simp
apply (case_tac "b \leqa")
- Application of gcdStep
apply simp
apply (drule_tac x=a in spec, drule mp)
apply arith
apply (elim allE impE)
prefer 2
apply (elim exE)
apply (rule exI)
apply (rule gcdStep, assumption)
```

```
apply simp+
apply (case_tac a)
apply simp
- Application of gcdSwap, followed by gcdZero
apply (drule_tac x=0 in spec, drule mp) apply arith
apply (drule_tac x=0 in spec, drule_tac x=0 in spec, drule mp)
apply simp
apply (elim exE)
apply (rule exI)
apply (rule gcdSwap) apply (rule gcdZero)
apply simp
- Application of gcdSwap, followed by gcdStep
apply (drule_tac x=b in spec, drule mp) apply arith
apply (elim allE impE)
prefer 2
apply (elim exE)
apply (rule exI)
apply (rule gcdSwap)
apply (rule gcdStep) apply assumption
apply arith+
done
lemma gcd_defined: "\forall a b. \exists g. (a, b, g) \in gcd"
    apply clarify
    apply (rule_tac n="a + b" in gcd_defined_aux)
    apply simp
done
```

