
Isabelle/HOL Exercises

Projects

The Euclidean Algorithm – Inductively

Rules without base case

Show that the following

inductive set evenempty :: "nat set" where
Add2Ie: "n ∈ evenempty =⇒ Suc(Suc n) ∈ evenempty"

defines the empty set:

lemma evenempty_empty: "evenempty = {}"

by (auto elim: evenempty.induct)

The Euclidean algorithm

Define inductively the set gcd : (a,b,g) ∈ gcd means that g is the greatest common divisor
of a und b. The definition should closely follow the Euclidean algorithm.

Reminder: The Euclidean algorithm repeatedly subtracts the smaller from the larger num-
ber, until one of the numbers is 0. Then, the other number is the gcd.

inductive set gcd :: "(nat × nat × nat) set" where
gcdZero: "(u, 0, u) ∈ gcd" |

gcdStep: " [[ (u - v, v, g) ∈ gcd; 0 < v; v ≤ u ]] =⇒ (u, v, g) ∈ gcd" |

gcdSwap: " [[ (v, u, g) ∈ gcd; u < v ]] =⇒ (u, v, g) ∈ gcd"

Now, compute the gcd of 15 and 10:

lemma "(15, 10, ?g) ∈ gcd"

apply (rule gcdStep) apply simp

apply (rule gcdSwap)

apply (rule gcdStep) apply simp

apply (rule gcdStep) apply simp

apply (rule gcdSwap)

apply (rule gcdZero)

apply simp+

done

How does your algorithm behave on special cases as the following?



lemma "(0, 0, ?g) ∈ gcd"

by (rule gcdZero)

Show that the gcd is really a divisor (for the proof, you need an appropriate lemma):

lemma gcd_divides: "(a,b,g) ∈ gcd =⇒ g dvd a ∧ g dvd b"

lemma dvd_minus: " [[ v ≤ u; (g::nat) dvd u - v; g dvd v ]] =⇒ g dvd u"

apply (clarsimp simp add: dvd_def)

apply (rule_tac x="k + ka" in exI)

apply (simp add: add_mult_distrib2)

done

lemma gcd_divides: "(a,b,g) ∈ gcd =⇒ g dvd a ∧ g dvd b"

apply (induct rule: gcd.induct)

apply simp

apply (simp add: dvd_minus)

apply simp

done

Show that the gcd is the greatest common divisor:

lemma gcd_greatest [rule_format]: "(a,b,g) ∈ gcd =⇒
0 < a ∨ 0 < b −→ (∀ d. d dvd a −→ d dvd b −→ d ≤ g)"

lemma dvd_leq: " [[ 0 < v; (d ::nat) dvd v ]] =⇒ d ≤ v"

by (clarsimp simp add: dvd_def)

lemma dvd_minus2: " [[ (d::nat) dvd u; d dvd v ]] =⇒ d dvd u - v"

apply (clarsimp simp add: dvd_def)

apply (rule_tac x="k-ka" in exI)

apply (simp add: diff_mult_distrib2)

done

lemma gcd_greatest [rule_format]: "(a,b,g) ∈ gcd =⇒
0 < a ∨ 0 < b −→ (∀ d. d dvd a −→ d dvd b −→ d ≤ g)"

apply (induct rule: gcd.induct)

apply (clarsimp simp add: dvd_leq)

apply clarsimp

apply (case_tac "v = u")

apply simp

apply (blast dest: dvd_minus2)+

done

Here as well, you will have to prove a suitable lemma. What is the precondition 0 < a ∨
0 < b good for?
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So far, we have only shown that gcd is correct, but your algorithm might not compute a
result for all values a,b. Thus, show completeness of the algorithm:

lemma gcd_defined: "∀ a b. ∃ g. (a, b, g) ∈ gcd"

The following lemma, proved by course-of-value recursion over n, may be useful. Why does
standard induction over natural numbers not work here?

lemma gcd_defined_aux [rule_format]:

"∀ a b. (a + b) ≤ n −→ (∃ g. (a, b, g) ∈ gcd)"

apply (induct rule: nat_less_induct)

apply clarify

The idea is to show that gcd yields a result for all a, b whenever it is known that gcd

yields a result for all a’, b’ whose sum is smaller than a + b.

In order to prove this lemma, make case distinctions corresponding to the different clauses
of the algorithm, and show how to reduce computation of gcd for a, b to computation of
gcd for suitable smaller a’, b’.

lemma gcd_defined_aux [rule_format]:

"∀ a b. (a + b) ≤ n −→ (∃ g. (a, b, g) ∈ gcd)"

apply (induct rule: nat_less_induct)

apply clarify

apply (case_tac b)

— Application of gcdZero
apply simp

apply (rule exI)

apply (rule gcdZero)

apply (rename_tac n a b b’)

apply simp

apply (case_tac "b ≤ a")

— Application of gcdStep
apply simp

apply (drule_tac x=a in spec, drule mp)

apply arith

apply (elim allE impE)

prefer 2

apply (elim exE)

apply (rule exI)

apply (rule gcdStep, assumption)
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apply simp+

apply (case_tac a)

apply simp

— Application of gcdSwap, followed by gcdZero
apply (drule_tac x=0 in spec, drule mp) apply arith

apply (drule_tac x=0 in spec, drule_tac x=0 in spec, drule mp)

apply simp

apply (elim exE)

apply (rule exI)

apply (rule gcdSwap) apply (rule gcdZero)

apply simp

— Application of gcdSwap, followed by gcdStep
apply (drule_tac x=b in spec, drule mp) apply arith

apply (elim allE impE)

prefer 2

apply (elim exE)

apply (rule exI)

apply (rule gcdSwap)

apply (rule gcdStep) apply assumption

apply arith+

done

lemma gcd_defined: "∀ a b. ∃ g. (a, b, g) ∈ gcd"

apply clarify

apply (rule_tac n="a + b" in gcd_defined_aux)

apply simp

done
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