Isabelle/HOL Exercises
 Trees, Inductive Data Types

Binary Decision Diagrams

Boolean functions (in finitely many variables) can be represented by so-called binary decision diagrams (BDDs), which are given by the following data type:
datatype bdd = Leaf bool | Branch bdd bdd
A constructor Branch b1 b2 that is i steps away from the root of the tree corresponds to a case distinction based on the value of the variable v_{i}. If the value of v_{i} is False, the left subtree $b 1$ is evaluated, otherwise the right subtree $b 2$ is evaluated. The following figure shows a Boolean function and the corresponding BDD.

v_{0}	v_{1}	v_{2}	$f\left(v_{0}, v_{1}, v_{2}\right)$
False	False	$*$	True
False	True	$*$	False
True	False	$*$	False
True	True	False	False
True	True	True	True

Exercise 1: Define a function
consts eval : : "(nat \Rightarrow bool) \Rightarrow nat \Rightarrow bdd \Rightarrow bool"
that evaluates a BDD under a given variable assignment, beginning at a variable with a given index.

Exercise 2: Define two functions

```
consts
    bdd_unop :: "(bool # bool) => bdd => bdd"
    bdd_binop :: "(bool }=>\mathrm{ bool }=>\mathrm{ bool) }=>\mathrm{ bdd }=>\mathrm{ b bdd }=>\mathrm{ bdd"
```

for the application of unary and binary operators to BDDs, and prove their correctness.
Now use bdd_unop and bdd_binop to define

```
consts
    bdd_and :: "bdd => bdd => bdd"
```

```
bdd_or :: "bdd => bdd => bdd"
bdd_not :: "bdd => bdd"
bdd_xor :: "bdd => bdd => bdd"
```

and show correctness.
Finally, define a function

```
consts bdd_var :: "nat # bdd"
```

to create a BDD that evaluates to True if and only if the variable with the given index evaluates to True. Again prove a suitable correctness theorem.

Hint: If a lemma cannot be proven by induction because in the inductive step a different value is used for a (non-induction) variable than in the induction hypothesis, it may be necessary to strengthen the lemma by universal quantification over that variable (cf. Section 3.2 in the Tutorial on Isabelle/HOL).

Example: instead of

```
lemma "P (b::bdd) x"
apply (induct b)

Strengthening:
```

lemma "\forallx. P (b::bdd) x"

```
lemma "\forallx. P (b::bdd) x"
apply (induct b)
```

apply (induct b)

```

Exercise 3: Recall the following data type of propositional formulae (cf. the exercise on "Representation of Propositional Formulae by Polynomials")
datatype form \(=T\) | Var nat | And form form | Xor form form
together with the evaluation function evalf:
constdefs
xor : : "bool \(\Rightarrow\) bool \(\Rightarrow\) bool"
"xor \(x y \equiv(x \wedge \neg y) \vee(\neg x \wedge y) "\)
consts
evalf :: "(nat \(\Rightarrow\) bool) \(\Rightarrow\) form \(\Rightarrow\) bool"
primrec
"evalf e \(T=\) True"
"evalf e (Var i) = e i"
"evalf e (And f1 f2) = (evalf e f1 \(\wedge\) evalf e f2)"
"evalf e (Xor f1 f2) = xor (evalf e f1) (evalf e f2)"
Define a function
consts mk_bdd :: "form \(\Rightarrow\) bdd"
that transforms a propositional formula of type form into a BDD. Prove the correctness theorem
theorem mk_bdd_correct: "eval e \(0\left(m k_{-} b d d f\right)=e v a l f e f "\)```

