Isabelle/HOL Exercises
 Trees, Inductive Data Types

Complete Binary Trees

Let's work with skeletons of binary trees where neither the leaves ("tip") nor the nodes contain any information:
datatype tree $=T p \mid N d$ tree tree
Define a function tips that counts the tips of a tree, and a function height that computes the height of a tree.

```
consts tips :: "tree => nat"
primrec
    "tips Tp = 1"
    "tips (Nd l r) = tips l + tips r"
consts height :: "tree => nat"
```

primrec
"height Tp = 0"
"height (Nd 1 r) $=\max (h e i g h t ~ 1) ~(h e i g h t r)+1 "$

Complete binary trees of a given height are generated as follows:

```
consts cbt :: "nat => tree"
primrec
    "cbt 0 = Tp"
    "cbt (Suc n) = Nd (cbt n) (cbt n)"
```

We will now focus on these complete binary trees.
Instead of generating complete binary trees, we can also test if a binary tree is complete. Define a function iscbt f (where f is a function on trees) that checks for completeness: $T p$ is complete, and $N d l r$ is complete iff l and r are complete and $f l=f r$.

```
consts iscbt :: "(tree => 'a) => tree => bool"
```

primrec
"iscbt f Tp = True"
"iscbt $f(N d \operatorname{l})=(i s c b t f l \wedge$ iscbt $f r \wedge f l=f r) "$
We now have 3 functions on trees, namely tips, height and size. The latter is defined automatically - look it up in the tutorial. Thus we also have 3 kinds of completeness: complete wrt. tips, complete wrt. height and complete wrt. size. Show that

- the 3 notions are the same (e.g. iscbt tips $t=i s c b t$ size t), and
- the 3 notions describe exactly the trees generated by cbt: the result of cbt is complete (in the sense of iscbt, wrt. any function on trees), and if a tree is complete in the sense of iscbt, it is the result of cbt (applied to a suitable number - which one?).

Hints:

- Work out and prove suitable relationships between tips, height und size.
- If you need lemmas dealing only with the basic arithmetic operations (+, *, ^ etc), you may "prove" them with the command sorry, if neither arith nor you can find a proof. Not apply sorry, just sorry.
- You do not need to show that every notion is equal to every other notion. It suffices to show that $A=C$ und $B=C-A=B$ is a trivial consequence. However, the difficulty of the proof will depend on which of the equivalences you prove.
- There is \wedge and \longrightarrow.

The three notions are the same:

```
lemma [simp]: "iscbt height t --> tips t = 2 " (height t)"
    apply (induct t)
    apply auto
done
theorem iscbt_height_tips: "iscbt height \(t=i s c b t\) tips t"
    apply (induct \(t\) )
    apply auto
done
lemma [simp]: "tips \(t=\) size \(t+1 "\)
    apply (induct \(t\) )
    apply auto
done
theorem iscbt_tips_size: "iscbt tips \(t=i s c b t\) size t"
    apply (induct \(t\) )
    apply auto
done
theorem iscbt_size_height: "iscbt size \(t=i s c b t\) height t"
    by (simp add: iscbt_height_tips iscbt_tips_size)
```

The 3 notions describe exactly the trees generated by cbt:

```
theorem "iscbt f (cbt n)"
    apply (induct n)
    apply auto
done
theorem "iscbt height t --> t = cbt (height t)"
    apply (induct t)
    apply auto
done
```

Find a function f such that iscbt f is different from iscbt size.
lemma "iscbt (λt. 0) \neq iscbt size"
apply (rule notI)
apply (drule_tac $x=" N d T p(N d T P T p) "$ in cong)
apply (rule refl)
apply simp
done

