
Isabelle/HOL Exercises

Trees, Inductive Data Types

Folding Lists and Trees

Some more list functions

Recall the summation function

sum :: "nat list ⇒ nat"

primrec
"sum [] = 0"

"sum (x # xs) = x + sum xs"

In the Isabelle library, you will find (in the theory List.thy) the functions foldr and
foldl, which allow you to define some list functions, among them sum and length. Show
the following:

lemma sum_foldr: "sum xs = foldr (op +) xs 0"

lemma length_foldr: "length xs = foldr (λ x res. 1 + res) xs 0"

Repeated application of foldr and map has the disadvantage that a list is traversed several
times. A single traversal is sufficient, as illustrated by the following example:

lemma "sum (map (λ x. x + 3) xs) = foldr h xs b"

Find terms h and b which solve this equation.

Generalize this result, i.e. show for appropriate h and b :

lemma "foldr g (map f xs) a = foldr h xs b"

Hint: Isabelle can help you find the solution if you use the equalities arising during a proof
attempt.

The following function rev_acc reverses a list in linear time:

consts
rev_acc :: "[’a list, ’a list] ⇒ ’a list"

primrec
"rev_acc [] ys = ys"

"rev_acc (x#xs) ys = (rev_acc xs (x#ys))"

Show that rev_acc can be defined by means of foldl.



lemma rev_acc_foldl: "rev_acc xs a = foldl (λ ys x. x # ys) a xs"

Prove the following distributivity property for sum :

lemma sum_append [simp]: "sum (xs @ ys) = sum xs + sum ys"

Prove a similar property for foldr, i.e. something like foldr f (xs @ ys) a = f (foldr f

xs a) (foldr f ys a). However, you will have to strengthen the premises by taking into
account algebraic properties of f and a.

lemma foldr_append: "foldr f (xs @ ys) a = f (foldr f xs a) (foldr f ys a)"

Now, define the function prod, which computes the product of all list elements

prod :: "nat list ⇒ nat"

directly with the aid of a fold and prove the following:

lemma "prod (xs @ ys) = prod xs * prod ys"

Functions on Trees

Consider the following type of binary trees:

datatype ’a tree = Tip | Node "’a tree" ’a "’a tree"

Define functions which convert a tree into a list by traversing it in pre-, resp. postorder:

preorder :: "’a tree ⇒ ’a list"

postorder :: "’a tree ⇒ ’a list"

You have certainly realized that computation of postorder traversal can be efficiently rea-
lized with an accumulator, in analogy to rev_acc :

consts
postorder_acc :: "[’a tree, ’a list] ⇒ ’a list"

Define this function and show:

lemma "postorder_acc t xs = (postorder t) @ xs"

postorder_acc is the instance of a function foldl_tree, which is similar to foldl.

consts
foldl_tree :: "(’b => ’a => ’b) ⇒ ’b ⇒ ’a tree ⇒ ’b"

Show the following:

lemma "∀ a. postorder_acc t a = foldl_tree (λ xs x. Cons x xs) a t"

Define a function tree_sum that computes the sum of the elements of a tree of natural
numbers:
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consts
tree_sum :: "nat tree ⇒ nat"

and show that this function satisfies

lemma "tree_sum t = sum (preorder t)"
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