Isabelle/HOL Exercises
 Trees, Inductive Data Types

Folding Lists and Trees

Some more list functions

Recall the summation function

```
    sum :: "nat list => nat"
primrec
    "sum [] = 0"
    "sum (x # xs) = x + sum xs"
```

In the Isabelle library, you will find (in the theory List.thy) the functions foldr and foldl, which allow you to define some list functions, among them sum and length. Show the following:

```
lemma sum_foldr: "sum xs = foldr (op +) xs 0"
    apply (induct xs)
    apply auto
done
lemma length_foldr: "length xs = foldr ( }\lambda\mathrm{ x res. 1 + res) xs 0"
    apply (induct xs)
    apply auto
done
```

Repeated application of foldr and map has the disadvantage that a list is traversed several times. A single traversal is sufficient, as illustrated by the following example:

```
lemma "sum (map (\lambda x. x + 3) xs) = foldr h xs b"
```

Find terms h and b which solve this equation.

```
lemma "sum (map ( \lambdax. x + 3) xs) = foldr ( \lambdax y. x + y + 3) xs 0"
    apply (induct xs)
    apply auto
done
```

Generalize this result, i.e. show for appropriate h and b :
lemma "foldr g (map f xs) a $=$ foldr h xs b"

Hint: Isabelle can help you find the solution if you use the equalities arising during a proof attempt.

```
lemma "foldr g (map f xs) a = foldr ( }\lambda\textrm{x}\mathrm{ acc. g (f x) acc) xs a"
    apply (induct xs)
    apply auto
done
```

The following function rev_acc reverses a list in linear time:

```
consts
    rev_acc :: "['a list, 'a list] => 'a list"
primrec
    "rev_acc [] ys = ys"
    "rev_acc (x#xs) ys = (rev_acc xs (x#ys))"
```

Show that rev_acc can be defined by means of foldl.
lemma rev_acc_foldl_aux [rule_format]:
" \forall a. rev_acc xs a $=$ foldl (λ ys $x . x$ \# ys) a xs"
apply (induct xs)
apply auto
done
lemma rev_acc_foldl: "rev_acc xs a $=$ foldl (λ ys x. x \# ys) a xs" by (rule rev_acc_foldl_aux)

Prove the following distributivity property for sum:

```
lemma sum_append [simp]: "sum (xs @ ys) = sum xs + sum ys"
    apply (induct xs)
    apply auto
done
```

Prove a similar property for foldr, i.e. something like foldr f (xs © ys) a $=f$ (foldr f xs a) (foldr f ys a). However, you will have to strengthen the premises by taking into account algebraic properties of f and a.

```
constdefs
    left_neutral :: "['a # 'b # 'b, 'a] # bool"
    "left_neutral f a == ( }\forall\textrm{x}.(\textrm{f}a\textrm{a}=x))
    assoc :: "['a # 'a # 'a] => bool"
    "assoc f == (}\forall\textrm{X y z. f (f x y) z = f x (f y z))"
```

lemma foldr_append:
$" \llbracket$ left_neutral f a; assoc $f \rrbracket \Longrightarrow$ foldr $f(x S$ @ ys) $a=f(f o l d r f$ xs a)
(foldr f ys a)"

```
    apply (induct xs)
        apply (simp add: left_neutral_def)
    apply (simp add: assoc_def)
done
```

Now, define the function prod, which computes the product of all list elements

```
prod :: "nat list # nat"
```

```
defs
    prod_def: "prod xs == foldr (op *) xs 1"
```

directly with the aid of a fold and prove the following:
lemma "prod (xs @ ys) = prod xs * prod ys"
apply (simp only: prod_def)
apply (rule foldr_append)
apply (simp add: left_neutral_def)
apply (simp add: assoc_def)
done

Functions on Trees

Consider the following type of binary trees:

```
datatype 'a tree = Tip | Node "'a tree" 'a "'a tree"
```

Define functions which convert a tree into a list by traversing it in pre-, resp. postorder:

```
preorder :: "'a tree # 'a list"
postorder :: "'a tree # 'a list"
```

primrec
"preorder Tip = []"
"preorder (Node $1 \times x$ x $=\mathrm{x} \#(($ preorder l) @ (preorder r))"
primrec
"postorder Tip = []"
"postorder (Node $1 \times r)=(p o s t o r d e r ~ 1) ~ @ ~(p o s t o r d e r ~ r) ~ @ ~[x] " ~$

You have certainly realized that computation of postorder traversal can be efficiently realized with an accumulator, in analogy to rev_acc:

```
consts
    postorder_acc :: "['a tree, 'a list] => 'a list"
```

primrec

```
"postorder_acc Tip xs = xs"
"postorder_acc (Node l x r) xs = (postorder_acc l (postorder_acc r (x#xs)))"
```

Define this function and show:

```
lemma postorder_acc_aux [rule_format]:
    \(" \forall x s . p o s t o r d e r_{-} a c c t x s=(p o s t o r d e r t)\) © xs"
    apply (induct \(t\) )
    apply auto
done
```

lemma "postorder_acc t xs = (postorder t) @ xs"
by (rule postorder_acc_aux)
postorder_acc is the instance of a function foldl_tree, which is similar to foldl.
consts
foldl_tree : : " ('b => 'a => 'b) \Rightarrow 'b \Rightarrow 'a tree $\Rightarrow{ }^{\prime}{ }^{\prime} b^{\prime \prime}$
primrec
"foldl_tree f a Tip = a"
"foldl_tree f a (Node l x r) = (foldl_tree f (foldl_tree f (f a x) r) l)"

Show the following:

```
lemma "\forall a. postorder_acc t a = foldl_tree (\lambda xs x. Cons x xs) a t"
    apply (induct t)
    apply auto
done
```

Define a function tree_sum that computes the sum of the elements of a tree of natural numbers:

consts

```
    tree_sum :: "nat tree \(\Rightarrow\) nat"
```


primrec

```
"tree_sum Tip = 0"
    "tree_sum (Node 1 x r) \(=(\) tree_sum 1\()+x+\left(t r e e_{-} s u m ~ r\right) "\)
```

and show that this function satisfies

```
lemma "tree_sum \(t=\) sum (preorder \(t\) )"
    apply (induct \(t\) )
    apply auto
done
```

