Isabelle/HOL Exercises
 Trees, Inductive Data Types

Representation of Propositional Formulae by Polynomials

Let the following data type for propositional formulae be given:

```
datatype form = T | Var nat | And form form | Xor form form
```

Here T denotes a formula that is always true, Var n denotes a propositional variable, its name given by a natural number, And $f 1 f 2$ denotes the AND combination, and Xor $f 1$ $f 2$ the XOR (exclusive or) combination of two formulae. A constructor F for a formula that is always false is not necessary, since F can be expressed by Xor $T T$.
Exercise 1: Define a function
consts evalf :: "(nat \Rightarrow bool) \Rightarrow form \Rightarrow bool"
that evaluates a formula under a given variable assignment.
Propositional formulae can be represented by so-called polynomials. A polynomial is a list of lists of propositional variables, i.e. an element of type nat list list. The inner lists (the so-called monomials) are interpreted as conjunctive combination of variables, whereas the outer list is interpreted as exclusive-or combination of the inner lists.

Exercise 2: Define two functions

```
consts
    evalm :: "(nat => bool) => nat list => bool"
    evalp :: "(nat }=>\mathrm{ bool) # nat list list }=>\mathrm{ bool"
```

for evaluation of monomials and polynomials under a given variable assignment. In particular think about how empty lists have to be evaluated.

Exercise 3: Define a function
consts poly :: "form \Rightarrow nat list list"
that turns a formula into a polynomial. You will need an auxiliary function
consts mulpp :: "nat list list \Rightarrow nat list list \Rightarrow nat list list"
to "multiply" two polynomials, i.e. to compute

$$
\left(\left(v_{1}^{1} \odot \cdots \odot v_{m_{1}}^{1}\right) \oplus \cdots \oplus\left(v_{1}^{k} \odot \cdots \odot v_{m_{k}}^{k}\right)\right) \odot\left(\left(w_{1}^{1} \odot \cdots \odot w_{n_{1}}^{1}\right) \oplus \cdots \oplus\left(w_{1}^{l} \odot \cdots \odot w_{n_{l}}^{l}\right)\right)
$$

where \oplus denotes "exclusive or", and \odot denotes "and". This is done using the usual calculation rules for addition and multiplication.

Exercise 4: Now show correctness of your function poly:
theorem poly_correct: "evalf e f = evalp e (poly f)"
It is useful to prove a similar correctness theorem for mulpp first.

