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Foreword

The 11th International Workshop on Confluence (IWC 2022) is held on August 1, 2022, in Haifa. IWC
2022 is affiliated with the 7th International Conference on Formal Structures for Computation and
Deduction (FSCD 2022), which is part of the Federated Logic Conference 2022 (FLoC 2022).

Confluence, as a general notion of determinism, is an essential property of rewrite systems and has
emerged as a crucial concept for many applications. However, the confluence property is also relevant
to various further areas of rewriting, such as completion, commutation, termination, modularity, and
complexity. The International Workshop on Confluence was created as a forum to discuss all these
aspects, as well as related topics, implementation issues, and new applications.

IWC 2022 continues this tradition. The present report comprises nine regular submissions and the
abstract of an invited talk, as well as a summary of the 11th Confluence Competition (CoCo 2022). In
the invited talk, Nao Hirokawa highlights the impressive progress in confluence research since the initial
work by Knuth & Bendix and Huet, discussing different approaches to proving confluence that have ad-
vanced the area in the last 20 years. The regular contributions in these proceedings reflect the wide scope
of current confluence research, ranging from new confluence criteria and novel confluence-related prop-
erties over formalization of confluence results to implementation aspects and applications. At the same
time, the spectrum of rewrite formalisms (first- as well as higher-order, conditional rewriting, rewriting
under strategies) used to model problems from different application areas underlines the importance of
confluence for various domains.

The renewed interest in confluence research in the last decade resulted in a variety of novel approaches,
which were also implemented in powerful tools that compete in the annual confluence competition. The
second part of this report is devoted to CoCo 2022, providing a general overview as well as system
descriptions of all competition entrants.

IWC 2022 was made possible by the commitment of many people who contributed to the submissions,
the preparation and the program of the workshop, as well as the confluence competition. These include
authors of papers and tools, committee members, subreviewers, and the organizers of CoCo. We are
very grateful for their hard work. In addition, we want to thank the organizers of FSCD and FLoC for
staging this exciting event that IWC 2022 can be part of.

Sarah Winkler and Camilo Rocha Bolzano and Cali, 11 July 2022
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Raúl Gutiérrez, Miguel Vı́tores, Salvador Lucas . . . . . . . . . . . . . . . . . . . . 48

Confluence Competition 54
Confluence Competition 2022
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Seven Confluence Criteria for Solving COPS #20

Nao Hirokawa*

JAIST, Japan
hirokawa@jaist.ac.jp

COPS #20 is a thought-provoking confluence problem for term rewriting, posed by Gramlich
and Lucas [2, Example 2].1 Although the term rewrite system of the problem is confluent, it
is beyond the realm of classical confluence criteria such as Knuth and Bendix’ criterion [6] and
Huet’s parallel closedness [5]. In this talk we will discuss various solutions to the problem,
recalling powerful confluence methods developed in the last decade and a half [1, 2, 3, 4, 7, 8,
9, 10].
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Development Closed Critical Pairs:

Towards a Formalized Proof

Christina Kohl1 and Aart Middeldorp1

Department of Computer Science, University of Innsbruck, Austria
{christina.kohl,aart.middeldorp}@uibk.ac.at

Abstract

Having development closed critical pairs is a well-known sufficient condition for confluence
of left-linear term rewrite systems. We present formalized results involving proof terms and
unification that play an important role in the proof.

1 Introduction

In recent years several confluence criteria for first-order rewrite systems have been formalized
in a proof assistant [4–6]. A well-known condition that has eluded all attempts so far is the
result by van Oostrom [9] that a left-linear rewrite system is confluent if its critical pairs are
development closed. In [2] it is suggested to use proof terms [8, Chapter 8] to obtain a rigorous
proof. In [4] it is further suggested that a formalization of residual theory might be helpful.
Here we pursue these suggestions further and present formalizations of several results that we
believe will lead to a formal proof of the development closedness condition.

Our formalization is based on IsaFoR1 and uses the existing formalizations of unifi-
cation and critical pairs described in [7]. Our own development can be found at http:

//informatik-protem.uibk.ac.at/DC. To help readers negotiate the theory files we have
annotated important results in this paper by a ✓-symbol which directly links to the HTML
presentation of the corresponding result in our formalization.

2 Proof Terms

We use Greek letters for rule symbols which are used in proof terms. If α is a rule symbol
then lhs(α) (rhs(α)) denotes the left-hand (right-hand) side of the rewrite rule denoted by
α. Furthermore var(α) denotes the list (x1, . . . , xn) of variables appearing in α in some fixed
order. The length of this list is the arity of α. The list varpos(α) = (p1, . . . , pn) denotes
the corresponding variable positions in lhs(α) such that lhs(α)|pi = xi. Given a rule symbol
α with var(α) = (x1, . . . , xn) and terms t1, . . . , tn, we write ⟨t1, . . . , tn⟩α for the substitution
{xi 7→ ti | 1 ⩽ i ⩽ n}. Given a proof term A, its source src(A) and target tgt(A) are computed
by the following equations for st ∈ {src, tgt}:

st(x) = x

st(f(A1, . . . , An)) = f(st(A1), . . . , st(An))

src(α(A1, . . . , An)) = lhs(α)⟨src(A1), . . . , src(An)⟩α
tgt(α(A1, . . . , An)) = rhs(α)⟨tgt(A1), . . . , tgt(An)⟩α

Proof terms A and B are said to be co-initial if they have the same source. The proof term A
can be seen as a witness of the multi-step src(A) ◦−→ tgt(A).For every multi-step there exists

1http://cl-informatik.uibk.ac.at/isafor
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a proof term witnessing it. In the setting of left-linear TRSs we can extend the definition of
src to contexts of proof terms by adding the clause src(□) = □. Doing the same for tgt or for
arbitrary TRSs however could lead to more than one hole appearing in the result. The following
result is an easy consequence of the idempotence of src and tgt.

Lemma 1. For any substitution σ, proof term context C, and proof term A we have

src(Aσ) = src(src(A)σ) tgt(Aσ) = tgt(tgt(A)σ)

src(C[A]) = src(C[src(A)]) = src(C)[src(A)]) tgt(C[A]) = tgt(C[tgt(A)])

For co-initial proof terms A and B we can define partial operations residual (/), join (⊔),
and deletion (−). The residual A / B is used to compute which redexes in A remain after
contracting the redexes of B, A ⊔B is used to obtain a single proof term containing all redexes
of A and B, and A−B is used to delete the redexes of B from A. The definitions can be found
in Appendix A. Straightforward induction proofs on the definitions yield the following result.

Lemma 2. 1. If A / B and B / A are defined then src(B / A) = tgt(A) and tgt(A / B) =
tgt(B / A).

2. If A ⋆ B is defined then src(A ⋆ B) = src(A) = src(B) for ⋆ ∈ {⊔,−}.
The rules below can be used to compute joins, residuals, and deletions if the proof terms

involved adhere to certain patterns.

Lemma 3. Let ⋆ ∈ {⊔, /,−}.
1. A ⋆ src(A) = A

2. If A ⋆ B = D then C[A] ⋆ src(C)[B] = C[D] for any proof term context C.

3. If σ(x) = src(τ(x)) for all x ∈ Var(A) then Aσ ⊔ src(A)τ = Aτ .

Since the residual and deletion operations are not symmetric (as opposed to join) there is no
obvious extension of the last item to / and −.

3 Development Closed Critical Pairs

To show that a left-linear TRS is confluent if it is development closed it suffices to show that ◦−→
has the diamond property. A sketch of this proof is depicted in Figure 3. There the multi-step
s ◦−→ t is witnessed by the proof term A, the multi-step s ◦−→ u is witnessed by the proof
term B, and we need to show t ◦−→ v ◦←− u for some term v. The idea is to use well-founded
induction on the amount of overlap between A and B. The case where A and B do not overlap
is straightforward since then the proof terms A / B and B / A are well-defined and have the
same target (Lemma 2). In the other case we can use the fact that the TRS is development
closed to show that the co-initial proof terms A /∆1 and D ⊔ (B −∆2) /∆1 can be constructed
and that the overlap between these is less than between A and B. A key ingredient for the
proof is the notion of an innermost overlap between A and B. Here an overlap is simply a pair
of positions (p, q) such that the redex in A at position p overlaps with the redex in B at position
q. An innermost overlap is one where no other overlap occurs below it. Formal definitions can
be found in Appendix C.

Assuming that A and B have overlap, we select an innermost overlap (p, q) and assume
q ⩽ p without loss of generality. Now let q′ = p\q, varpos(lhs(α)) = (p1, . . . , pn), var(lhs(α)) =

3
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(x1, . . . , xn), varpos(lhs(β)) = (q1, . . . , qm), and var(lhs(β)) = (y1, . . . , ym). We assume without
loss of generality Var(lhs(α)) ∩ Var(lhs(β)) = ∅ and define a substitution σ that maps the
variables of lhs(α) and lhs(β) to subterms of s such that lhs(α)σ = s|p and lhs(β)σ = s|q:

σ = {xi 7→ s|ppi | 1 ⩽ i ⩽ n} ∪ {yj 7→ s|qqj | 1 ⩽ j ⩽ m}

Furthermore we can use Lemma 9 of Appendix B to obtain another substitution τ which is
an mgu of lhs(α) and lhs(β)|q′ :

τ ={xi 7→ lhs(β)|q′pi | 1 ⩽ i ⩽ n and q′pi ∈ Pos(lhs(β))} ∪
{yj 7→ lhs(α)|qj\q′ | 1 ⩽ j ⩽ m and qj\q′ ∈ PosF (lhs(α))}

Hence we obtain the critical peak

lhs(β)[rhs(α)τ ]q′
q′←−−
α

lhs(β)[lhs(α)τ ]q′ = lhs(β)τ
ϵ−−→
β

rhs(β)τ ✓

Assuming that the given TRS is development closed, we know there exists a multi-step
lhs(β)[rhs(α)τ ]q′ ◦−→ rhs(β)τ . Let D′ be the proof term representation of such a multi-step and
define D = s[D′σ]q. Then we can prove the following result.

Lemma 4. The proof term D witnesses the multi-step tgt(∆1) ◦−→ tgt(∆2). ✓

Ultimately we need to also show that D ⊔ (B − ∆2) / ∆1 is well-defined and witnesses
tgt(∆1) ◦−→ tgt(B). For this purpose we introduce another substitution ρ:

ρ = {yj 7→ Bj | 1 ⩽ j ⩽ m} ∪ {xi 7→ lhs(β)⟨B1, . . . , Bm⟩β |q′pi | 1 ⩽ i ⩽ n}

Note the similarity to σ: ρ maps to subterms of B while σ maps to the sources of these proof
terms. The key property that makes ρ useful for computing (B −∆2) /∆1 is the following:

Lemma 5. If 1 ⩽ j ⩽ m then τ(yj)ρ = Bj. ✓

Proof. We distinguish two cases: τ(yj) = yj and τ(yj) ̸= yj . In the first case we immediately
obtain τ(yj)ρ = ρ(yj) = Bj from the definition of ρ. For the second case first observe that if
all function symbols of lhs(α) also appear in lhs(β)⟨B1, . . . , Bm⟩β |q′ (i.e., no rule symbols are in
the way) then it follows from the definition of ρ that

lhs(α)ρ = lhs(β)⟨B1, . . . , Bm⟩β |q′ (∗)

Checking that all function symbols of lhs(α) also appear in lhs(β)⟨B1, . . . , Bm⟩β |q′ can be done
by verifying

p′ ∈ PosF (lhs(α)) =⇒ src♯(lhs(β)⟨B1, . . . , Bm⟩β |q′)(p′) is unlabeled ✓

which relies on the fact that having a labeled function symbol at such a position p′ would
contradict the assumption that (p, q) is an innermost overlap of A and B. With (∗) we obtain
τ(yj)ρ = lhs(α)|qj\q′ρ = (lhs(β)⟨B1, . . . , Bm⟩β |q′)|qj\q′ = lhs(β)⟨B1, . . . , Bm⟩β |qj = Bj .

The term s = src(A) = src(B) contains a redex with respect to β at position q. In the
following we denote by qβ the corresponding position of the rule symbol β in the proof term
B, i.e., the position qβ such that B = B[β(B1, . . . , Bm)]qβ and src(B)[ ]q = src(B[ ]qβ ). It
can be shown that such a position exists for arbitrary proof terms B and positions q where
src♯(B)(q) = β0. ✓
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Lemma 6. 1. D ⊔ (B −∆2) /∆1 = B[D′ρ]qβ ✓

2. D ⊔ (B −∆2) /∆1 witnesses tgt(∆1) ◦−→ tgt(B) ✓ ✓

Proof. From Lemma 3 we obtain B −∆2 = B[lhs(β)⟨B1, . . . , Bm⟩β ]qβ and with Lemma 5 we
further obtain B[lhs(β)⟨B1, . . . , Bm⟩β ]qβ = B[lhs(β)τρ]qβ = B[lhs(β)[lhs(α)τ ]q′ρ]qβ . Another
application of Lemma 3 yields (B −∆2) /∆1 = B[lhs(β)[rhs(α)τ ]q′ρ]qβ . From Lemma 3(3) we
obtain D′σ ⊔ lhs(β)[rhs(α)τ ]q′ρ = D′ρ and since src(B[ ]qβ ) = s[ ]q and D = s[D′σ]q we can
apply Lemma 3(2) (modulo symmetry of ⊔) to obtain the desired D⊔ (B−∆2)/∆1 = B[D′ρ]qβ .
From Lemma 2 and Lemma 4 we obtain src((B − ∆2) / ∆1) = tgt(∆1) = src(D) and hence
src(D ⊔ (B −∆2) /∆1) = tgt(∆1). It remains to show that tgt(D ⊔ (B −∆2) /∆1) = tgt(B).
We have

tgt(D ⊔ (B −∆2) /∆1) = tgt(B[D′ρ]qβ )

= tgt(B[tgt(rhs(β)τρ)]qβ ) (Lemma 1 and definition of D′)

= tgt(B[tgt(rhs(β)⟨B1, . . . , Bm⟩β)]qβ ) (Lemma 5)

= tgt(B[β(B1, . . . , Bm)]qβ ) (Lemma 1)

= tgt(B)

In order to apply the induction hypothesis and to conclude the proof in Figure 3 it remains
to show that the amount of overlap between the proof terms A /∆1 and D ⊔ (B −∆2) /∆1 is
less than the amount of overlap between A and B. Like the proof of Lemma 5 this relies on
the fact that we chose an innermost overlap (p, q) during the construction of D. At the time of
writing the formalization of this fact is still work in progress.

The example below illustrates the constructions of Lemma 6 for specific proof terms A and
B. It can be retraced in the tool ProTeM [3] where we implemented all important operations.

Example 7. Consider the left-linear and development closed TRS R consisting of the rules

α : f(x1, g(x2))→ f(x1, g(x1)) β : f(g(y1), y2)→ f(g(y1), g(y1)) γ : g(a)→ g(b) δ : b→ a

and the proof terms A = g(α(γ, a)) and B = g(β(a,γ)). We have src(A) = src(B) =
g(f(g(a), g(a))) and overlaps(A,B) = {(1, 1), (1, 12), (11, 1)} where both the second and third
overlap are innermost. For the overlap (11, 1) we obtain the substitution τ = {y1 7→ a} with
corresponding critical peak

f(g(b), y2)
1←−−
γ

f(g(a), y2)
ϵ−−→
β

f(g(a), g(a))

This critical peak can be closed by applying β at the root and δ at position 11 in the term
f(g(b), y2) as witnessed by the proof term D′ = β(δ, y2). Since σ = {y1 7→ a, y2 7→ g(a)}
we have D = s[D′σ]1 = s[β(δ, g(a))]1 = g(β(δ, g(a))). Furthermore, ∆1 = g(f(γ, g(a))),
∆2 = g(β(a, g(a))), ρ = {y1 7→ a, y2 7→ γ} and hence

B −∆2 = g(f(g(a),γ)) = B[lhs(β)τρ]1

(B −∆2) /∆1 = g(f(g(b),γ)) = B[lhs(β)[rhs(γ)τ ]1ρ]1

D ⊔ (B −∆2) /∆1 = g(β(δ,γ)) = B[D′ρ]1

For the non-innermost overlap (1, 1) the term (B − ∆2) / ∆1 as well as the substitution
ρ are not well-defined. We have ∆1 = g(α(g(a), a)) and ∆2 = g(β(a, g(a))) and hence B −
∆2 = s[(f(g(a),γ))]1. Since f(g(a),γ) does not match lhs(α) the result of (B − ∆2) / ∆1

is undefined. Also the substitution ρ cannot be computed since the variable binding x2 7→
lhs(β)⟨B1, . . . , Bm⟩β |21 = f(g(a),γ)|21 does not make sense.
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induction hypothesis

s u′ u

t′

t

∆2 B /∆2

∆1

A /∆1

D

D ⊔ ((
B −∆2) /

∆1)

Figure 1: Picture proof.
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Abstract

We characterize local confluence of conditional rewrite systems as the joinability of a
set of conditional pairs including the usual conditional critical pairs and a new kind of
pairs we call conditional variable pairs.

1 Introduction

In a landmark 1980 paper, Gérard Huet proved the following result for Term Rewriting Systems
(TRSs [2]), see [6, Lemma 3.1] (we borrow [2, Theorem 6.2.4] here):

A TRS R is locally confluent if and only if all its critical pairs are joinable.

A critical pair 〈s, t〉 is easily obtained from rules `→ r and `′ → r′ of R by unification between
a non-variable subterm of ` and the whole `′. Pairs 〈s, t〉 are joinable if both s and t can be
rewritten to the same term u in zero or more steps. Huet’s result provides a straightforward
criterion for disproving confluence of TRSsR: the existence of non-joinable critical pairs implies
that R is not locally confluent nor confluent. Together with Newman’s Lemma, it yields a
characterization of confluence for terminating TRSs [2, Corollary 6.2.5].

Conditional TRSs (CTRSs, see, e.g., [9, Chapter 7]) consist of rules ` → r ⇐ c where a
sequence c of conditions s ≈ t controls the application of a rewriting step with `→ r. The notion
of conditional critical pair 〈s, t〉 ⇐ c exists for CTRSs, and a modified notion of joinability is
introduced to take into account the conditional part c [7, 4, 1]), in sharp contrast to TRSs,
though, there are non-locally confluent CTRSs without conditional critical pairs.

Example 1. The following (oriented) CTRS R [9, Example 7.3.3]:

a → b (1)

f(x) → c⇐ x ≈ a (2)

has no conditional critical pair. However, we have f(a)→(1) f(b) and f(a)→(2) c (this is because,
when variable x in the left-hand side f(x) of rule (2) is instantiated to a, the corresponding
instance a ≈ a of the condition x ≈ a of the rule is trivially satisfied). Thus, we obtain a peak

f(b) (1)← f(a) →(2) c (3)

Since f(b) and c are irreducible, they are not joinable and R is not (locally) confluent.

In this paper we show that there is a set of conditional pairs (properly extending the set
of conditional critical pairs) whose joinability characterizes local confluence of CTRSs. For
instance, for R in Example 1, the following pair witnesses non-confluence of R:

〈f(x′), c〉 ⇐ x→ x′, x ≈ a (4)

where x and x′ are distinct variables. This is an example of a conditional variable pair, a new
class of conditional pairs that we introduce here.

∗Partially supported by MCIN/AEI project RTI2018-094403-B-C32 and GV project PROMETEO/2019/098.
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2 First-order theory of a CTRS. Rewriting as deduction

As explained in [8, Section 4.5], given a CTRS R both →R and →∗R are defined as deducibility
of goals s → t and s →∗ t (where → and →∗ are viewed as predicate symbols) in a first-order
theory R associated to R consisting of the following components: (i) a sentence

(∀x) x→∗ x (5)

expressing reflexivity of many-step rewriting; (ii) a sentence

(∀x, y, z) x→ y ∧ y →∗ z ⇒ x→∗ z (6)

expressing compatibility of one-step and many-step rewriting; (iii) for each k-ary function symbol
f and 1 ≤ i ≤ k, a sentence

(∀x1, . . . , xi, . . . , xk, yi) xi → yi ⇒ f(x1, . . . , xi, . . . , xk)→ f(x1, . . . , yi, . . . , xk) (7)

where x1, . . . , xk and yi are distinct variables, enabling the propagation of rewriting steps inside
other terms; and (iv) for each rule `→ r ⇐ s1 ≈ t1, . . . , sn ≈ tn in R a sentence

(∀x1, . . . , xn) s1 ≈ t1 ∧ · · · ∧ sn ≈ tn ⇒ `→ r (8)

where x1, . . . , xn are the variables occurring in the rule. Sentence (8) expresses the possibility
of applying a rewriting step σ(`) → σ(r) to for some substitution σ provided that, for all
1 ≤ i ≤ n, σ(si) ≈ σ(ti) can be proved. Besides, (v) we need to define the meaning of predicate
≈ used in the conditions. In this note, we exemplify our treatment for oriented CTRSs, where
instantiated conditions σ(si) ≈ σ(ti) are treated as reachability tests σ(si)→∗ σ(ti). Thus, the
following sentence should be added:

(∀x, y) x→∗ y ⇒ x ≈ y (9)

Example 2. For R in Example 1, R = {(5), (6), (10), (11), (12), (9)} with

(∀x, y) x→ y ⇒ f(x)→ f(y) (10)

a→ b (11)

(∀x) x ≈ a⇒ f(x)→ c (12)

Example 3. For the following oriented CTRS R:

b → c (13)

g(d) → b (14)

g(x) → c⇐ g(x) ≈ b (15)

we have R = {(5), (6), (16), (17), (18), (19), (9)} with

(∀x, y) x→ y ⇒ g(x)→ g(y) (16)

b→ c (17)

g(d)→ b (18)

(∀x) g(x) ≈ b⇒ g(x)→ c (19)

For all terms s and t we write s →R t (resp. s →∗R t) iff R ` s → t (resp. R ` s →∗ t)
holds. As usual, “iff ” means “if and only if ” and ‘`’ denotes deducibility. Terms s and t are
joinable if there is a term u such that both s→∗R u and t→∗R u hold. We say that R is (locally)
confluent iff →R is (locally) confluent. Also, R is terminating iff →R is terminating.
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3 Peaks and (local) confluence

Consider a CTRS R, a term s, positions p, p′ ∈ Pos(s), rules α : ` → r ⇐ c and α′ : `′ →
r′ ⇐ c′, and substitutions σ and σ′, such that (i) s|p = σ(`) and σ(c) holds in R, i.e., if c is
s1 ≈ t1, . . . , sn ≈ tn, then for all 1 ≤ i ≤ n R ` σ(si) ≈ σ(ti) holds; and (ii) s|p′ = σ′(`′) and
σ′(c′) holds. The situation

u = s[σ′(r′)]p′ R← s[σ′(`′)]p′ = s = s[σ(`)]p →R s[σ(r)]p = v (20)

is called a peak. A CTRS is locally confluent if and only if for all terms s, u, v defining a peak
(20), u and v are joinable. Depending on the relative location of positions p and p′ in (20),
different classes of peaks are usually distinguished [4, Sections 2.1–2.3]:

Disjoint peaks. If p and p′ in (20) are disjoint, i.e., p ‖ p′, then s = s[σ(`)]p[σ
′(`′)]p′ =

s[σ′(`′)]p′ [σ(`)]p. Accordingly, (20) can be written as follows:

u = s[σ′(r′)]p′ [σ(`)]p = s[σ′(r′)]p′ R←s[σ′(`′)]p′ [σ(`)]p →R s[σ(r)]p = s[σ′(`′)]p′ [σ(r)]p = v (21)

Disjoint peaks (21) are always joinable.

Critical peaks. If p′ = p.p ∈ Pos(s) for some non-variable position p ∈ PosF (`), then
s = s[σ(`)[σ′(`′)]p]p, σ(`) = σ(`)[σ′(`′)]p, and after removing the untouched context around
σ(`), which remains unchanged in both rewriting steps of the peak, and assuming that α and
α′ share no variable (rename if necessary), we can use a single substitution σ to obtain the
usual simpler form of (20) (which is then called a critical peak) as follows:

u = σ(`)[σ(r′)]p R← σ(`)[σ(`′)]p →R σ(r) = v (22)

Improper critical peaks. If (22) is obtained from a single rule α : `→ r ⇐ c which is used
twice, i.e., α′ in (22) is a renamed version of α, and p = Λ is the root position, we call it an
improper critical peak. Since p = Λ and s = σ(`) = σ(`′), (22) becomes

σ(r′) R← σ(`′) = σ(`) →R σ(r) (23)

Variable peaks. If p′ ≥ p.p for some variable position p ∈ PosX (`), then s = s[σ(`)[C[σ′(`′)]]p]p
for some context C[ ] and σ(x) = C[σ′(`′)]. Thus, (20) can be (equivalently) written as follows:

u = σ(`)[C[σ′(r′)]]p R← σ(`)[C[σ′(`′)]]p →R σ(r) = v (24)

Dershowitz et al. call (24) a variable peak. Note that σ(`) = σ(`)[C[σ′(`′)]]p. In the realm of
TRSs, variable peaks (24) are always joinable. However, as observed in [4, Section 2.3], this is
not true for CTRSs. In particular, (3) is a variable peak which is not joinable.

Since every peak (20) is either a disjoint peak (21), which is always joinable, a (proper or
improper) critical peak (22), or a variable peak (24), we have the following.

Proposition 4. A CTRS is locally confluent iff all peaks (22) and (24) are joinable.

Note that critical peaks (22) include improper critical peaks (23).
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4 From peaks to extended critical pairs

In the following, we deal with conditional pairs, 〈s, t〉 ⇐ c, where s and t are terms and c
is a sequence of conditions s → t or s ≈ t. A conditional pair 〈s, t〉 ⇐ c is joinable if for
all substitutions σ, whenever σ(c) holds in R, terms σ(s) and σ(t) are joinable. Methods
for (dis)proving joinability of conditional pairs have been investigated in [5, Section 6]. In
particular, R-infeasible conditional pairs 〈s, t〉 ⇐ c, i.e., such that σ(c) holds (in R) for no
substitution σ, are trivially joinable.

Conditional critical pairs. Let R be a CTRS, α : `→ r ⇐ c and α′ : `′ → r′ ⇐ c′ be rules
of R sharing no variable (rename if necessary), and p ∈ PosF (`) be a nonvariable position of `
such that `|p and `′ unify with mgu θ. Then,

〈θ(`[r′]p), θ(r)〉 ⇐ θ(c), θ(c′) (25)

is a conditional critical pair of R [9, Definition 7.1.8(1)]. Each critical peak κ is represented by
a conditional critical pair π; joinability of π implies that of κ. If α and α′ in (27) are renamed
versions of the same rule, the case p = Λ is usually considered improper to obtain a conditional
critical pair. Thus, following the literature, we call proper to those conditional critical pairs
not fitting this case. As usual, the set of proper conditional critical pairs of R is CCP(R).

Example 5. The CTRS R in Example 3 has a proper conditional critical pair

〈b, c〉 ⇐ g(d) ≈ b (26)

This pair is clearly joinable as b→(13) c holds.

Improper conditional critical pairs. As shown in, e.g., [1, Example 4.1.a], improper crit-
ical pairs can jeopardize (local) confluence of CTRSs R. Let α : `→ r ⇐ c ∈ R such that c is
not empty, and α′ : `′ → r′ ⇐ c′ a renamed version of α so that α and α′ share no variable.
Let θ be a most general unifier of ` and `′. Then,

〈θ(r′), θ(r)〉 ⇐ θ(c), θ(c′) (27)

is an improper conditional critical pair (iCCP) of R [1, Definition 4.2]. The set of improper
conditional critical pairs of R is iCCP(R). For 2-CTRS, where rules `→ r ⇐ c satisfy Var(r) ⊆
Var(`), improper critical pairs are trivially joinable and can be dismissed.

Example 6. Both CTRSs in Examples 1 and 3 are 2-CTRS. Thus, improper conditional critical
pairs are dismissed.

Improper conditional critical pairs are often ‘forgotten’ when analyzing confluence of CTRSs
R. Most tools do not mention or compute them. The first definitions of what, following [9,
Definition 7.1.8(1)], we call conditional critical pair today, i.e., [7, Definition 3.2] (speaking
about contextual critical pairs, though) and [4, Definition 3] (just talking about critical pairs)
did not distinguish between proper and improper pairs. Hence, their results showing confluence
by joinability of conditional critical pairs, e.g., [7, Theorems 3.3 & 5.3] and [3, Section 3] should
be used considering both proper and improper pairs. Avenhaus and Loŕıa-Sáenz also talk
about critical pairs but explicitly distinguish proper and improper. However, their notation
CP(R) excludes improper pairs from the set of conditional critical pairs associated to R [1,
Definition 4.2]. Such a notation is used in their results (e.g., [1, Theorem 4.1]), i.e., only proper
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conditional critical pairs are considered. Ohlebusch’s book does not talk about proper or
improper pairs; however the aforementioned notion of conditional critical pair (CCP) actually
refers to proper conditional pairs, as can be concluded from [9, Definition 7.1.8(1)]. Recent
works about confluence of CTRSs usually follow this definition, see, e.g., [10]. Thus, prospective
readers of the literature must be careful about what notion of conditional critical pair is actually
used in each considered result. Moreover, important notions like orthogonal CTRS (requiring
left-linearity plus the absence of conditional critical pairs, see, e.g., [9, Definition 7.1.10]),
depend on what a conditional critical pair is. For instance, R = {0 + y → y, s(x) + y →
x + s(y), f(x, y) → z ⇐ x + y ≈ z + z′} [1, Example 4.1(a)] is a 3-CTRS which is orthogonal
according to [9] (there is no proper CCP) but not according to [4] (there is an improper CCP).
As noticed in [1], R is not confluent due to such an improper (but harmful) CCP.

Conditional variable pairs. In [4, Section 3], Dershowitz et al. show that variable peaks
(24) of CTRSs may fail to be joinable. No corresponding notion of pair is given, though. The
following definition captures variable peaks of CTRSs as a new kind of conditional pairs.

Definition 7 (Conditional variable pair). Let R be a CTRS, ` → r ⇐ c ∈ R, x ∈ Var(`),
p ∈ Posx(`), and x′ be a fresh variable. Then,

〈`[x′]p, r〉 ⇐ x→ x′, c (28)

is a conditional variable pair (CVP). Variable x is called the critical variable of the pair, and p
is called the critical position.

Each variable peak κ is represented by a conditional variable pair π; joinability of π implies
that of κ. The set of conditional variable pairs of a CTRS R is CVP(R). Unconditional
rules may determine conditional variable pairs, but they are always joinable, and then can be
dismissed.

Example 8. Rule (2) of R in Example 1 defines the conditional variable pair (4).

Example 9. The CTRS R in Example 3 has the following conditional variable pair:

〈g(x′), c〉 ⇐ x→ x′, g(x) ≈ b (29)

This pair is joinable because the conditional part x → x′, g(x) ≈ b is R-infeasible (this can be
automatically proved with infChecker http: // zenon. dsic. upv. es/ infChecker/ ).

5 Characterization of local confluence of CTRSs

All aforementioned kinds of conditional pairs are collected into a single set.

Definition 10 (Extended conditional critical pairs). Let R be a CTRS. The set

ECCP(R) = CCP(R) ∪ iCCP(R) ∪ CVP(R) (30)

which extends CCP(R) with the improper conditional critical pairs and conditional variable
pairs is the set of extended conditional critical pairs of R.

The following result provides a general characterization of local confluence of conditional
rewriting on the basis of the analysis of extended conditional pairs.
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Theorem 11. A CTRS R is locally confluent iff all pairs in ECCP(R) are joinable.

Example 12. For R in Example 1, consider the conditional variable pair (4):

〈f(x′), c〉 ⇐ x→ x′, x ≈ a

The sequence x→ x′, x ≈ a is clearly feasible (with x 7→ a and x′ 7→ b, for instance). However,
the sequence x → x′, x ≈ a, f(x′) →∗ z, c →∗ z is proved R-infeasible by infChecker. Thus, (4)
is not joinable. By Theorem 11, R is not (locally) confluent.

As a corollary of Theorem 11 and Newman’s Lemma, we have the following.

Theorem 13. A terminating CTRS R is confluent iff all pairs in ECCP(R) are joinable.

Example 14. For R in Example 3, improper CCPs are harmless, and the only proper CCP
(26) and CVP (29) are joinable. By Theorem 11, R is locally confluent. Since R is terminating
(use mu-term http: // zenon. dsic. upv. es/ muterm/ ) by Theorem 13, R is confluent.

The CTRSs in Examples 1 and 3 cannot be handled by any automatic tool available in
the CoCoWeb platform http://cl-informatik.uibk.ac.at/software/cocoweb/. We are
currently implementing the results of this paper as part of the confluence tool CONFident
http://zenon.dsic.upv.es/confident/.
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Abstract

We introduce level-commutation of conditional term rewriting systems (CTRSs) that
extends the notion of level-confluence, in a way similar to extending confluence to commu-
tation. We show a criterion for level-commutation of oriented CTRSs, which generalizes
the one for commutation of term rewriting systems in (Toyama, 1987). As a corollary, we
obtain a criterion of level-confluence of oriented CTRSs which extends the one in (Suzuki
et al., 1995).

1 Introduction

Level-confluence is a property of conditional term rewriting systems (CTRSs) that implies con-
fluence. Suzuki et al. showed that orthogonal properly oriented right-stable (oriented) CTRSs
are level-confluent [6]. In unconditional case, some criteria for left-linear (possibly overlap-
ping) term rewriting systems (TRSs) to have confluence are known (e.g., [3, 8]). But similar
extensions for left-linear (possibly overlapping) CTRSs are not known. Also, in unconditional
case, several criteria for ensuring commutation for left-linear TRSs R and S are known (e.g.,
[8, 9])—commutation coincides with confluence when R = S. Again, similar criteria for left-
linear CTRSs are not known.

In this paper, we give a critical pair criterion for left-linear properly oriented right-stable
CTRSs, under which we prove level-commutation of CTRSs. Our critical pair criterion is a
generalization of the one given for TRSs in [8]. As a corollary, we obtain a critical pair criterion
for level-confluence of (possibly) overlapping oriented CTRSs, which properly extends the result
of [6] mentioned above.

2 Preliminaries

We basically follow standard notions and notations (e.g., [1, 5]). Below, we explain some key
notions and fix some notations that will be used in this paper.

The set of variables in a term t is denoted by V(t). A term t is linear if each variable occurs
in t at most once; t is ground if no variable occurs in t. The set of positions in a term t is
denoted by Pos(t); the root position is written as ε. The symbol (function symbol or variable)
at a position p ∈ Pos(t) in a term t is written as t(p). The subterm of t at a position p ∈ Pos(t)
is written as t|p. We write t[u]p the term obtained from t by replacing the subterm at the
position p ∈ Pos(t) with a term u.

If t = C[u] for a context C, we say u is a subterm of t. We will speak of subterm occurrences
when we consider subterms with their respective positions; see e.g. [7] for a precise formalization
of subterm occurrences. We will use capital letters A,B, . . . for subterm occurrences. For

∗This work was partly supported by JSPS KAKENHI Grant Number JP21K11750.
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simplicity, a subterm occurrence A in a term is also treated as a term A (for example, we might
write A→R B). By a notation A ⊆ B, we indicate that A is a subterm occurrence in a subterm
occurrence B; thus, for example, |{A | A ⊆ f(x, x)}| = 3.

Each rewrite rule l → r satisfies the usual variable conditions l /∈ V and V(r) ⊆ V(l).
Rewrite rules are identified modulo renaming. A TRS R is left-linear if l is linear for each
l → r ∈ R. We write s→p

R t if s|p is the redex of this rewrite step. We have a parallel rewrite
step s ‖−→R t if s = C[s1, . . . , sn], t = C[t1, . . . , tn] (n ≥ 0) for some contexts C and subterms
si, ti such that si →R ti for all i = 1, . . . , n.

A relation → is confluent if
∗← ◦ ∗→ ⊆ ∗→ ◦ ∗←; A TRS R is confluent if so is its rewrite

relation →R. Relations → and ; commute (or, are commutative) if
∗←◦ ∗ ⊆ ∗ ◦ ∗←; TRSs R

and S commute if so are their rewrite relations→R and→S . Clearly, self-commutativity equals
confluence, and a sufficient criteria for commutativity naturally arises the one for confluence.

Let l1 → r1 and l2 → r2 be rewrite rules so that their sets of variables are renamed to be
disjoint. If a non-variable subterm l2|p of l2 satisfies l2|pσ = l1σ for some substitution σ, we say
that l1 → r1 overlaps on l2 → r2 (at p), provided that p 6= ε for the case l1 → r1 and l2 → r2

are identical. Suppose l1 → r1 overlaps on l2 → r2 at p and σ is a mgu of l2|p and l1. Then the
pair 〈l2[r1]pσ, r2σ〉 is called a critical pair (obtained from that overlap); when p = ε, the pair is
called outer and p > ε, the pair is called inner. The set of critical pairs from overlaps of rules of
R is denoted by CP(R); the set of outer (inner) critical pairs are denoted by CPout(R) (resp.
CP in(R)). Let R,S be TRSs. The set of critical pairs obtained from overlaps of l1 → r1 ∈ R
on l2 → r2 ∈ S is denoted by CP(R,S). The sets CPout(R,S) and CP in(R,S) are defined
similarly. We are now ready to state a sufficient criteria for commutativity of TRSs.

Proposition 1 ([8]). Let R and S be left-linear TRSs. If both of the following conditions are
satisfied, then R and S commute:

1. for any 〈p, q〉 ∈ CP(R,S), there exists s such that p ‖−→S s and q
∗→R s, and

2. for any 〈q, p〉 ∈ CP in(S,R), q ‖−→R p holds.

We note that the above criterion for commutativity arises a criterion for confluence: a left-
linear TRS R if confluent if (1) for any 〈p, q〉 ∈ CPout(R), there exists s such that p ‖−→R s

and q
∗→R s, and (2) for any 〈q, p〉 ∈ CP in(R), q ‖−→R p holds. Note here in the condition (1),

considering 〈p, q〉 ∈ CPout(R) is sufficient, instead of considering 〈p, q〉 ∈ CP(R), because of
the presence of condition (2).

A conditional rewrite rule has the form l → r ⇐ u1 ≈ v1, . . . , uk ≈ vk where l /∈ V;
here, u1 ≈ v1, . . . , uk ≈ vk is a sequence of (directed) equations, called the conditional part
of the rule. Let c = u1 ≈ v1, . . . , uk ≈ vk. Then, for any given substitution σ, we write
cσ = u1σ ≈ v1σ, . . . , ukσ ≈ vkσ. We often also treat c as a set {u1 ≈ v1, . . . , uk ≈ vk} so as
to write u ≈ v ∈ c, cσ ⊆ ;, etc, whose meaning should be apparent. The empty sequence is
also written as ∅, and l → r ⇐ ∅ is abbreviated as l → r. Conditional rewrite rules are also
identified modulo renaming.

A rewrite step of oriented CTRS R is defined via TRS Ri (i ∈ ω), which are inductively
given as follows:

R0 = ∅
Rn+1 = {lσ → rσ | l→ r ⇐ c ∈ R, cσ ⊆ ∗→Rn}

A rewrite step s →R t of CTRS R is given as s →R t iff s →Rn
t for some n. The smallest

n such that s →Rn
t is called the level of the rewrite step s →R t. We also use the notation

→R<n =
⋃
i<n→Ri . We will only consider oriented CTRSs in this paper, and so we will

abbreviate oriented CTRSs as CTRSs henceforth.
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A CTRSR is level-confluent if TRSsRn are confluent for all n ≥ 0. Clearly, level-confluence
implies confluence. One can naturally extend the notion of level-confluence, in the similar way
extending confluence to commutation.

Definition 2. CTRSs R and S are level-commutative if for any m,n ≥ 0,
∗←Rm ◦

∗→Sn ⊆∗→Sn ◦
∗←Rm

.

Clearly, level-commutativity implies commutativity, and self-level-commutativity equals
level-confluence.

We refer some notions, such as properly orientedness, right-stability and 3-CTRSs, necessary
to give a sufficient criteria for level-confluence to [6]. A CTRS R is left-linear if l is linear for all
l → r ⇐ c ∈ R. Let l1 → r1 ⇐ c1 and l2 → r2 ⇐ c2 be conditional rewrite rules so that their
sets of variables are renamed to be disjoint. We say l1 → r1 ⇐ c1 overlaps on l2 → r2 ⇐ c2 (at
p) if non-variable subterm l2|p of l2 satisfies l2|pσ = l1σ for some substitution σ, provided that
p 6= ε for the case l1 → r1 ⇐ c1 and l2 → r2 ⇐ c2 are identical. A CTRS R is non-overlapping
if there is no overlap between rules of R; R is orthogonal if it is left-linear and non-overlapping.

Proposition 3 ([6]). Let R be an orthogonal, properly oriented, right-stable 3-CTRS. Then,
∗←Rm

◦ ∗→Rn
⊆ ∗→Rn

◦ ∗←Rm
for any m,n ≥ 0. In particular, R is level-confluent.

Proposition 1 only deals with TRSs but capable of non-orthogonal case. On the other hand,
Proposition 3 can deal with CTRSs (not only TRSs) but limited to only orthogonal case. Also
Proposition 3 only claims on (level-)confluence, whereas Proposition 1 claims commutativity.
We will show how to unify these two propositions in the next section.

3 Level-Commutation

Let R be a CTRS. We use the notion of extended parallel rewriting [6] given as follows: we
write s↪−→q Rn

t if s = C[A1, . . . , Ap], t = C[B1, . . . , Bp] (p ≥ 0) for some context C and subterm

occurrences Ai, Bi such that either Ai →ε
Rn

Bi or Ai
∗→R<n Bi for all i = 1, . . . , p. We put

↪−→q R =
⋃
n≥0 ↪−→q Rn , which is called the extended parallel rewrite step of R. We will also write

s
A1,...,Ap

↪−→q R t to indicate subterm occurrences A1, . . . , Ap.

Proposition 3 is obtained in [6] by showing that if t
∗

↪−→q Rm
t1 and t

∗
↪−→q Rn

t2 then there

exists t3 such that t1
∗

↪−→q Rn
t3 and t2

∗
↪−→q Rm

t3. Our first key ingredient is our proof scenario

showing that if t
∗

↪−→q Rm t1 and t
∗

↪−→q Sn t2 then there exists t3 such that t1 ↪−→q Sn ◦
∗

↪−→q S<n t3
and t2

∗→Rm t3. We now reason why this approach is sound using an abstract setting.
Let (→n)n∈N be (N-indexed) relations on a set X. We put→<n =

⋃
i<n→i. The N-indexed

relations (→n)n∈N are said to be up-simulated if
∗→<n ⊆ →n for any n ∈ N.

Lemma 4. Let (→n)n∈N, (;n)n∈N be up-simulated relations on a set X. Suppose that, for any

m,n ∈ N, ←m ◦;n ⊆ n ◦ ∗ <n ◦ ∗←m. Then
∗←m ◦;n ⊆ ∗ n ◦ ∗←m for any m,n ∈ N.

Proof. Suppose z
∗←m x ;n y and let k = |x ∗→m z|. Then use by induction on 〈n + m, k〉 to

show z ;n ◦ ∗;<n w
∗←m y.

Lemma 5. Let (→n)n∈N, (;n)n∈N be up-simulated relations on a set X. Suppose that, for any

m,n ∈ N, ←m ◦;n ⊆ n ◦ ∗ <n ◦ ∗←m. Then
∗←m ◦ ∗;n ⊆ ∗ n ◦ ∗←m for any m,n ∈ N.

Proof. Use induction on | ∗;n| and Lemma 4.
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From this lemma, it easily follows:

Lemma 6. Let R,S be CTRSs. Suppose ←−↩q Rm
◦ ↪−→q Sn ⊆ ↪−→q Sn ◦

∗
↪−→q S<n

◦ ∗←Rm
for any

m,n ≥ 0. Then, for any m,n, we have
∗←Rm ◦

∗→Sn ⊆
∗→Sn ◦

∗←Rm .

Proof. We now abbreviate R and S for readability. Suppose z
∗←m x

∗→n y. As →k ⊆ ↪−→q k for

each k, we have z
∗←−↩q m x

∗
↪−→q n y. Clearly, (↪−→q k)k∈N are up-simulated by its definition. Thus,

it follows z
∗

↪−→q n v
∗←−↩q m y by using Lemma 5 and our hypothesis. Because

∗
↪−→q k ⊆ ∗→k for each

k, we obtain z
∗→n v

∗←m y.

Our second key ingredient is the following alternative definition of CCP.

Definition 7 (condition-separated CCP). Suppose l1 → r1 ⇐ c1 overlaps on l2 → r2 ⇐ c2
at p and σ is a mgu of l2|p and l1. Then the quadruple 〈l2[r1]pσ, r2σ〉 ⇐ 〈c1σ, c2σ〉 is called
a (condition-separated) conditional critical pair (CCP, for short) (obtained from that overlap);
when p = ε, the pair is called outer and p > ε, the pair is called inner. The set of (outer, inner)
critical pairs obtained from overlaps of l1 → r1 ⇐ c1 ∈ R on l2 → r2 ⇐ c2 ∈ S is denoted by
CCP(R,S) (resp. CCPout(R,S), CCP in(R,S)). The set of (outer, inner) critical pairs from
overlaps of rules of R is denoted by CCP(R) (resp. CCPout(R), CCP in(R)).

We note that, in literature, instead of distinguishing two sequences c1σ and c2σ, the com-
bined sequence of c1σ and c2σ is employed in the definition of CCPs.

Now we present our critical pair criterion for commutativity.

Theorem 8. Let R and S be left-linear, properly oriented, right-stable 3-CTRSs. If the fol-
lowing conditions are satisfied, then R and S are level-commutative:

1. for any 〈u, v〉 ⇐ 〈c, c′〉 ∈ CCP(R,S), m,n ≥ 1 and substitution ρ, if cρ ⊆ ∗→Rm−1
and

c′ρ ⊆ ∗→Sn−1
then there exists s such that uρ ↪−→q Sn ◦

∗
↪−→q S<n

s and vρ
∗→Rm

s, and

2. for any 〈v, u〉 ⇐ 〈c′, c〉 ∈ CCP in(S,R), m,n ≥ 1 and substitution ρ, if cρ ⊆ ∗→Rm−1
and

c′ρ ⊆ ∗→Sn−1 then vρ ↪−→q Rm uρ.

The detailed proof (in Japanese) can be found in [2], which extends [4]. We here only give
a brief sketch of the proof.

Proof. Let M
A1,...,Am
↪−→q Rm

N and M
B1,...,Bn
↪−→q Sn P . We show N↪−→q Sn ◦

∗
↪−→q <SnQ and P

∗→Rm
Q

for some Q. Let Γ = {Ai | ∃Bj . Ai ⊆ Bj} ∪ {Bi | ∃Aj . Bi ⊆ Aj} and ∆ = {Ai | ∀Bj . Ai 6⊆
Bj}∪ {Bi | ∀Aj . Bi 6⊆ Aj}. Let |Γ| = ∑

C∈Γ |C|. Thus, |Γ| is the sum of size of overlaps and ∆
is the set of maximal redexes. Our proof proceeds on induction on lexicographic combination of
〈m+n, |Γ|〉. The cases for m = 0 or n = 0 are easy, thus we consider the cases for m > 0, n > 0.
Let ∆ = {M1, . . . ,Mp}. Then we have M = C[M1, . . . ,Mp] for some context C. Furthermore,
we have N = C[N1, . . . , Np] and P = C[P1, . . . , Pp] for some N1, . . . , Np, P1, . . . , Pp such that
Mi↪−→q Rm

Ni, Mi↪−→q SnPi (i = 1, . . . , p). Thus, it suffices to show for each Mi, there exists Qi

such that Ni↪−→q Sn ◦
∗

↪−→q <SnQi and Pi
∗→Rm Qi. We distinguish two cases:

1. Case Mi /∈ {B1, . . . , Bn}. Let {B′1, . . . , B′q} = {Bj | 1 ≤ j ≤ n,B′j ⊂ Mi}. Then we have

Mi = Ci[B
′
1, . . . , B

′
q] and Pi = Ci[B̃

′
1, . . . , B̃

′
q] so that Mi

Mi
↪−→q Rm

Ni and Mi

B′1,...,B
′
q

↪−→q Sn Pi.
We distinguish the cases.
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(a) Case Mi
∗→Rm−1 Ni. This case basically follows from the induction hypothesis.

(b) Case Mi
Mi→Rm

Ni. Then we have Mi = lθ, Ni = rθ and Rm−1 ` cθ for some
l → r ⇐ c ∈ R. If all redex occurrences B′j in Mi is contained in the substitution
θ, then the desired Qi exists. Suppose otherwise, i.e. there exists B′j which is not
contained in θ. Let X and Y be sets given by

X = {B′j | 1 ≤ j ≤ q,B′j is not contained in θ}
Y = {B′j | 1 ≤ j ≤ q,B′j is contained in θ}

For each B′j ∈ X, either B′j
B′j→Sn B̃′j or B′j

∗→<Sn B̃
′
j . We distinguish two cases.

i. Case that there exists B′j ∈ X such that B′j
B′j→Sn M̃i(= B̃′j). This case follows

using the condition 2 of the theorem.

ii. Case that B′j
∗→Sn−1 M̃i(= B̃′j) holds for any B′j ∈ X. As Mi

B′1,...,B
′
q

↪−→q Sn Pi and
B′1, . . . , B

′
q are parallel, we can first rewrite B′j ∈ Y (1 ≤ j ≤ q). That is, let

Y = {B′′1 , . . . , B′′r }, and we have Mi

B′′1 ,...,B
′′
r

↪−→q Sn M̂i
∗→Sn−1

Pi. Here, since each

B′′j in contained in the substitution θ, one can obtain Q̂ such that Ni↪−→q SnQ̂,

M̂i→Rm
Q̂. Furthermore, since →Rm

⊆ ↪−→q Rm
and

∗→Sn−1
⊆ ∗
↪−→q Sn−1

, using

induction hypothesis, we can obtain Qi such that Q̂←Rm
M̂i

∗→Sn−1
Pi and

Q̂
∗

↪−→q Sn−1
Qi, Pi

∗→Rm
Qi. This is the case where our first key ingredient

becomes necessary.

2. Case Mi ∈ {B1, . . . , Bn}. Let {A′1, . . . , A′q} = {Aj | 1 ≤ j ≤ n,A′j ⊆ Mi}. Then one can

put Mi = Ci[A
′
1, . . . , A

′
q], Ni = Ci[Ã

′
1, . . . , Ã

′
q], Mi

A′1,...,A
′
q

↪−→q Rm Ni and Mi
Mi
↪−→q Sn Pi. By

definition, Mi
Mi
↪−→q Sn Pi is either of the form Mi

∗→Sn−1
Pi or Mi

Mi→Sn Pi. In the latter

case, there exists l′ → r′ ⇐ c′ ∈ S such that Mi = l′θ′, Ni = r′θ′ and c′θ′ ⊆ ∗→Sn−1 .

We distinguish whether all redex occurrences A′j in Mi is contained in θ′ or not. In the
latter case, w.l.o.g. assume that A′1 is not contained in θ′. Then there exists l→ r ⇐ c ∈
R such that A′1 = lθ and cθ ⊆ ∗→Rm−1

. We further distinguish two cases:

(α) A′1 = Mi and l→ r ⇐ c ∈ R are l′ → r′ ⇐ c′ ∈ S are identical.

(β) A′1 6= Mi or l→ r ⇐ c ∈ R and l′ → r′ ⇐ c′ ∈ S are distinct.

Case of (α), we use a construction similar to [6]. Here, we also use our assumption that R
and S are properly oriented and right-stable. Case of (β), the condition 1 of the theorem
is used.

Finally, from Lemma 6 we conclude that R and S are level-commutative.

A level-confluence criterion is obtain by taking R = S:

Corollary 9. Let R be a left-linear, properly oriented, right-stable 3-CTRSs. If the following
conditions are satisfied, then R is level-confluent:

1. for any 〈u, v〉 ⇐ 〈c, c′〉 ∈ CCPout(R), m,n ≥ 1 and substitution ρ, if cρ ⊆ ∗→Rm−1 and

c′ρ ⊆ ∗→Rn−1
then there exists s such that uρ ↪−→q Sn ◦

∗
↪−→q R<n

s and vρ
∗→Rm

s, and
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2. for any 〈v, u〉 ⇐ 〈c′, c〉 ∈ CCP in(R), m,n ≥ 1 and substitution ρ, if cρ ⊆ ∗→Rm−1 and

c′ρ ⊆ ∗→Rn−1
then vρ ↪−→q Rm

uρ.

Example 10. Let R and S be the following CTRSs:

R =





p(x)→ q(x)
r(x)→ s(p(x))
s(x)→ f(y) ⇐ p(x) ≈ y



 S =





p(x)→ r(x)
q(x)→ s(p(x))
s(x)→ f(y) ⇐ p(x) ≈ y





We have CCP(R,S) = {〈q(x), r(x)〉 ⇐ 〈∅, ∅〉} and CCP in(S,R) = ∅. Note that the overlap of
s(x)→ f(y)⇐ p(x) ≈ y ∈ R and s(x)→ f(y)⇐ p(x) ≈ y ∈ S is not considered, as these rules
are identical; the case 2 (α) of the proof sketch above treats this case. Now, because we have
q(x) →S s(p(x)) and r(x) →R s(p(x)), the condition (1) of the Theorem 8 is satisfied. Other
conditions of the theorem are also satisfied. Thus, R and S are level-commutative. Similarly,
one can show R∪ S is level-confluent.

Since TRSs can be regarded as CTRSs with no conditions and they are trivially properly-
oriented, right-stable, and of type 3, this theorem covers Proposition 1. Since rewrite steps
of TRSs are level 1 rewrite steps in CTRSs, however, when restricting to TRSs, Theorem 8
reduces to Proposition 1. On the other hand, Corollary 9 properly extends Proposition 3, as
witnessed by R∪ S in Example 10.
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Abstract

We introduce uniform completeness and give a local characterisation of it. We show it
yields a complete method for showing completeness of rewrite systems.

1 Introduction

The canonical way to establish completeness of rewrite systems is by showing local confluence
and termination, as enabled by Newman’s Lemma [4, Theorem 3]. In [5] we provided the
following alternative route to establishing completeneness:

Corollary 1. If → is normalising (WN) and ordered weak Church–Rosser, then → is complete.

Proof. Ordered weak Church–Rosser (Definition 3) entails by [5, Theorem 3] that → has random
descent,1 i.e. that any object convertible to normal form reduces to it, and always in the same
number of steps. Hence the additional assumption of normalisation entails completeness.

Observe that this alternative route in fact yields a result stronger than completeness, namely
that all reductions from a given object to normal form are not only terminating and end in the
same object, but also that the (length) measure of these reductions is always the same.

In this short paper we show the alternative route to be complete, if → is complete then → is
normalising and ordered weak Church–Rosser, when the order-constraint in the latter is allowed
to depend on an arbitrary measure [8]. We showcase the technique by some simple examples.

Example 1. Consider the rewrite system → having steps a→ b, b→ c and a→ c. It is trivially
complete. Measuring the steps by natural numbers (with addition) as a→1 b, b→1 c and a→2 c,
yields a system that is ordered weak Church–Rosser in the sense of [8] (for this chosen measure).
In particular, all reductions from a to its normal form c have the same measure 2. However,→ is not ordered weak Church–Rosser in the sense of [5], i.e. measuring the numbers of steps,
since the length of the reduction a→ b→ c from a to c is then 2, whereas that of a→ c is 1.

Note that adjoining a step c → c in the example yields a system that although no longer
WN, still is ordered weak Church–Rosser and that for any measure, also for the length measure.
The following two examples are WN, and ordered weak Church–Rosser for the length measure.

Example 2 ([5, Example 7]). Consider the rewrite system → that sorts strings of letters by
repeatedly swapping adjacent out-of-order letters. It is easy to see that if s ← t → u, then
s →n t n← u, with n ∈ {0,1,2} depending on whether the respective swaps are the same, non-
overlapping, or overlapping. For instance, for bca← cba→ cab we have bca→ bac→ abc← acb←
cab. Therefore → is ordered weak-Church–Rosser. As → is normalising, e.g. by bubble-sort, it
terminates uniquely by Corollary 1, taking the same number of steps given a string.

∗Supported by EPSRC Project EP/R029121/1 Typed lambda-calculi with sharing and unsharing.
1So named in [5] to honour [4]. The notion was given a description but not a definition [9] by Newman.
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Figure 1: Bowls and beans move (left) and normalisation (right)

Example 3 (cf. [2, Example 8.3]). Consider the rewrite system → that given a two-sided infinite
sequence Z→ N of bowls each holding a number of beans may, for a bowl holding at least two
beans, move one bean to each adjacent bowl, see Figure 1 left. Formally, t→ s if s is the same
as t except that for some z ∈Z such that t(z) ≥ 2, we have s(z − 1) = t(z − 1)+ 1, s(z) = t(z)− 2
and s(z + 1) = t(z + 1) + 1. It is easy to see that if s ← t → u, then s →n t n← u, with n ∈ {0,1}
depending on whether the respective moves are the same or not. Therefore → is ordered weak-
Church–Rosser. That → is normalising follows e.g. by noting that a sequence is in normal form
iff each bowl holds at most one bean, and that adding a single bean to a normal form produces
‘waves’ that first extend outwardly and then, after reaching their limit, die down inwardly,
see Figure 1 right. By Corollary 1 → is complete and by the observation, given a sequence
normalising it always takes the same number of steps before reaching the normal form.

2 Uniformly complete ⇔ has peak random descent

For a property Π of objects of a rewrite system its restriction to meaningful objects is of interest,
with the crudest approximation of meaningful being that objects be convertible to normal form.

Definition 1. A rewrite system → is uniformly Π if Π(a) for all a with a←→∗⋅ /→.
Uniformity resides in there being no steps between the objects that have property Π and

those that do not. Obviously, since uniform Π-ety requires Π to hold only for the objects
convertible to normal form, it is in general weaker than Π. In the literature uniform termination
has been studied, e.g. in [3] (cf. Remark 1). Here we introduce and study uniform completeness,
i.e. uniform Π-ety for Π the property defined by Π(a) ∶= a is confluent and terminating. We
relate uniform completeness to extant notions from rewriting [3, 10].

Proposition 1. → is uniformly complete iff → both is uniformly terminating and has NF.

Proof. For the only–if-direction, suppose → is uniformly complete. If an object is normalising, it
is convertible to some normal form hence terminating by assumption. If an object is convertible
to any normal form it is confluent by assumption so reduces to it, i.e. it has NF (the normal form
property [10, Definition 1.1,13(iv)]). For the if-direction, suppose → is uniformly terminating
and has NF. Then if an object is convertible to normal form, it is terminating by uniform
termination, and the reduction must end in the normal form by NF.

Example 4. Since β-reduction is confluent it has NF Combined with uniform termination of
the λI-calculus [1, p.20 7XXV] and of the simply typed λ-calculus it yields uniform completeness
of both. The untyped λ-calculus is not uniformly complete; cf. (λx.y) ((λz.z z) (λu.uu)).
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Remark 1. For reduction-closed properties Π, i.e. if Π(a) and a → b then Π(b), such as ter-
mination, a rewrite system being uniformly Π is equivalent to the absence of so-called Π-critical
steps, steps from an object not having property Π to one having it. In fact, that characterisation
was used as the definition of uniform termination in [3, Definition 2].2 Absence of Π-critical
steps can be positively stated as that all steps are Π-perpetual, i.e. preserve ¬Π, cf. [3].

The key result of this short note is a local [4] characterisation of uniform completeness via
the notion of peak random descent as introduced in [8, Definition 22]. Peak random descent
expresses that for any peak of reductions where the first ends in a normal form, the second can
be extended by a reduction to the same normal form such that both resulting legs have the
same measure, for a given measure on steps. Here, each step is measured by assigning to it
some element of a monoid, distinct from the unit. This is then naturally extended to (finite)
reductions by using the unit and operation of the monoid from tail to head, e.g. the measure
of →1 ⋅→2 in the monoid of natural numbers with zero and addition is 0+ 2+ 1 = 3. In order to
formalise the notion of peak random descent, we equip rewrite systems with such a measure [8].

Definition 2. A monoid with addition + and zero � is a derivation monoid if it comes equipped
with a well-founded partial order ≤ such that � is least and + is monotonic in both arguments
and strictly so in its second. A measure for a rewrite system is a map from steps to the non-�-
elements of a derivation monoid. The measure of a finite reduction is the sum of the measures
of the steps in it, from tail to head. This is extended to infinite reductions by representing
these as steps of the rewrite system →∞ [8, Definition 10] having a step from a to b for any
infinite →-reduction from a and any b. Such →∞-steps are measured by ⊺ with ⊺ added as a
top to the monoid.3 That allows to represent reductions that may be either finite or infinite by→⊛ ∶= (→ ∪→∞)∗, called extended reduction in [8].

We use µ, ν, . . . to denote arbitrary measures and m,n, . . . to denote finite (≠ ⊺) ones.
Example 5. • The ordinals equipped with zero 0, ordinal addition + and the standard order≤ on them constitute a derivation monoid. Note + is not strictly monotonic in its first

argument, e.g. 0 is smaller than 1 but 0 + ω = ω = 1 + ω.
• The length measure is obtained by assigning the ordinal 1 to all steps. An infinite reduc-
tion will then have measure ⊺, not ω. This is because to represent an infinite reduction,
we need to employ at least one →∞-step, making the whole reduction have measure ⊺.
(Note the measure is independent of ‘what infinite part’ is represented by a →∞-step.)

The above slightly generalises [8, Definition 4] motivated by the desire and need to use
ordinal measures. We assume + to be strictly monotonic only in its 2nd argument in a derivation
monoid, whereas in [8] strict monotonicity in both arguments was assumed. Moreover, we
measure reductions from tail to head whereas in [8] they were measured from head to tail. The
latter difference is only apparent as one can always transform to the other direction by using
λxy.y + x instead of +. The reason for changing it nonetheless is that it allows to keep the
standard ordinal operations; cf. Example 5. With this, things carry over verbatim:

Definition 3 ([8]). → has peak random descent if a ∗n← ⋅→⊛µ b with a in normal form implies

a ∗
n′← b with n′ + µ = n,4 and → is ordered locally confluent (or ordered weak Church–Rosser;

OWCR), if a n← ⋅→m b implies a→⊛µ′ ⋅ ∗n′← b with n′ +m ≤ µ′ +n, for some derivation monoid.5

2There it is called uniform normalisation, which in hindsight seems not the most uniform way of naming.
3By adjoining ⊺ to a derivation monoid it is no longer strict in its second argument.
4The condition n′ + µ = n implicitly captures that µ be finite, i.e. implicitly excludes infinite right legs.
5OWCR /⇒ WCR. E.g. b← b← a→ c→ c is OWCR since both b→∞⊺ c and c→∞⊺ b as b and c are looping.
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Figure 2: Measures obtained for rewrite systems of Example 1 (left) and Example 6.3 (right)

In a directed acyclic graph weights can be assigned to edges such that all paths from one
node to another in it have the same weight, by topological sorting. This key idea of the proof
of Lemma 1 (and thereby of this note) is illustrated in Example 6 and Figure 2.

Lemma 1. → is uniformly complete iff → has peak random descent.

Proof. For the only–if-direction first note that the assumption implies that all objects convert-
ible to some normal form are complete. Thus →+ is a well-founded order on them, and we will
exploit it to define a measure on the steps in conversions to normal form. We measure steps in
the derivation monoid of the ordinals with 0 and ordinal addition +, extended with a top ⊺.

We construct measuring functions both for steps and objects, with the measure of an object
being based on the measures of all its reductions to normal form. We first partition the objects
into those that are convertible to some normal form, and those that are not. We measure the
latter, and steps between them, arbitrarily, by 1. An object a of the former is measured by the
supremum of the successors of the measures of all b such that a → b. This is well-defined by
well-foundedness of →+. In turn, each such step a → b is measured by the ordinal γ such that
β + γ = α, where α, β are the measures of a, b. γ exists and is non-0 per construction.

We claim peak random descent then holds. Note that it suffices to verify it for finite peaks
a ∗α← ⋅→∗β b with a in normal form; a right leg containing an →∞-step would contradict uniform
termination. We prove that then α = γ +β with γ the measure of b, by induction on the length
of the peak, distinguishing cases on the direction of its last step. For the empty peak, it is
trivial as normal forms have measure 0. Otherwise, a ∗

α′← ⋅→∗β′ b′ ↔ b, where α′ = γ′ + β′ holds
with γ′ the measure of b′ by the induction hypothesis. Let δ be the measure of b′ ↔ b. If
b′ → b, then α = α′ = γ′ + β′ =(†) (γ + δ) + β′ = γ + (δ + β′) = γ + β where (†) holds since γ
and γ′ are the measures of b and b′ and δ the measure of b′ → b so γ′ = γ + δ. If b′ ← b, then
α = α′ + δ = (γ′ + β′) + δ = (γ′ + β) + δ =(∗) (γ′ + δ) + β = γ + β, using for (∗) that this case can
only happen when β = 0 = β′ (while constructing the left leg of the peak, its right leg is empty).

For the if-direction it suffices by Proposition 1 to show uniform termination and the normal
form property. To show the former it suffices by Remark 1 to note that if a → b and b is
terminating, the (finite) measure of the step and the reduction to normal form is, by peak
random descent, an upper bound on the measures of the reductions from a. The latter follows
by induction on the number of peaks in the conversion to normal form, cf. [8, p. 32:3].

Example 6. 1. The measures for Example 1 are displayed on the left in Figure 2. Since c
is a normal form its measure is 0. Since c is the only single-step reduct of b, the measure
of b is the successor of the measure of c, i.e. 1, so the step b → c has measure 1 as well.
Finally, both c and b being single-step reducts of a, the measure of a is the supremum of{0 + 1,1 + 1}, i.e. 2, so a→ b has measure 1 and a→ c measure 2;

2. It is easy to see that in Example 2 objects are measured by their number of inversions and
that all steps have measure 1, e.g. cba has 3 inversions and indeed requires 3 steps to sort;
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3. The measures for the rewrite system having steps a → bi and bi+1 → bi for i ∈ N, are
displayed on the right in Figure 2. Proceeding as in the previous item, the only interesting
thing to note is that the system is not finitely branching (FB). Accordingly a has measure
the supremum of {i + 1 ∣ i ∈N}, i.e. ω, which thus is the measure of each step from it too.

Remark 2. 1. The proof of Lemma 1 uses that for peaks β = 0 = β′ in the case of b′ ← b.
For arbitrary conversions instead of peaks, this need not hold, and indeed the construction
breaks down. To see this, consider the rewrite system > on the ordinals up to and including
ω. Proceeding as in the proof of the lemma, the objects and steps of the conversion
0 < 1 > 0 < ω are measured as 00 1< 11 >1 00 <ω ωω. But the measure of the backward steps
in the conversion is 1 + ω = ω which is different from the sum ω + 1 of the measures ω of
the object ω and 1 of the forward step(s) in the conversion.

2. Ordinals serve to deal with systems as in Example 6.3 that are not finitely branching.
For systems that are finitely branching (FB), the natural numbers suffice in the proof
of Lemma 1 since then the supremum is the maximum. For commutative conversion
monoids [8] such as the natural numbers with zero and addition, the proof generalises
from peaks to conversions since then (∗) in the proof holds unrestrictedly.

3 Local characterisation of uniform completeness

Lemma 2. → has peak random descent iff → is ordered locally confluent.

Proof. First, observe that→ is ordered locally confluent iff it is ordered confluent, i.e. a ∗n← ⋅→⊛µ b
implies a →⊛µ′ ⋅ ∗n′← b with n′ + µ ≤ µ′ + n [8, Definition 12]. This follows from (the proof
of) [8, Lemma 18], instantiating both rewrite systems with →, and noting that strictness of
monotonicty of + was only used in its second argument (to get, for our conventions, k′ < k′+m1).

We show → is ordered confluent iff it has peak random descent. For the only–if-direction,
ordered confluence for a ∗n← ⋅→⊛µ b with a in normal form implies a ∗

n′← b with n′ + µ ≤ n,
since a only allows the empty reduction with measure �. Applying ordered confluence to the
converse of the resulting peak, comprising two reductions to normal form a, yields conversely
that n ≤ n′ + µ, hence n′ + µ = n. For the if-direction we distinguish cases on whether a in the
peak a ∗n← ⋅→⊛µ b is normalising or not. If it is, say a →∗m′ a′ with a′ in normal form, then by
peak random descent for a′ ∗

m′+n← ⋅→⊛µ b we have a′ ∗n′← b with m′ + n = n′ + µ, as desired.
Otherwise, we conclude from a→∞⊺ b.

Remark 3. Whereas the first part of the proof of Lemma 2 is a special case of a commutation
lemma [8, Lemma 18], the second half is not; that explicitly exploits that extending a reduction
by further steps yields such a reduction again; this fails in the commutation case.

By the two lemmata we conclude to our main result and method to establish completeness.

Theorem 1. → is uniformly complete iff → is ordered locally confluent.

Corollary 2. → is complete iff → is ordered locally confluent and normalising.

Example 7. Consider the term rewrite rule for associativity:6 ϱ(x, y, z) ∶ xyz → x(yz). It is
linear and it has a single critical peak which may be completed into a local confluence diagram
with legs xyzw → x(yz)w → x(yzw) → x(y(zw)) and xyzw → xy(zw) → x(y(zw)). To show

6In applicative notation, using association to the left for the implicit infix application symbol @.
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OWCR, observe the length measure does not work as the legs have different lengths. Measuring
a step contracting ϱ(t, s, r) by twice the number of leaves of t does: both legs then have the same
measure: 2n+2n+2m = 2(n+m)+2n with n,m the number of leaves of t, s. For non-overlapping
peaks ordered local confluence follows from that counting the number of leaves in a term yields
a model, i.e. is invariant under ϱ. Since the bullet function of [7, Definition 32] induces a
normalising strategy [7, Lemma 35(Extensive)] → is complete by the corollary.

An algebraic way of defining the measure may be obtained by employing proof terms [10,
Chapter 8] to represent reductions resulting, e.g., in representing the legs of the diagram as
ϱ(x, y, z)w ⋅ (ϱ(x, yz,w) ⋅ xϱ(y, z,w)) and ϱ(xy, z,w) ⋅ ϱ(x, y, zw). Then the measure is defined
by a 2-algebra, i.e. an algebra for proof terms, building on a 1-algebra, i.e. an algebra on terms.
In the 1-algebra, computing the number of leaves, we interpret variables by assigning 1 to them
and interpret @ as addition. The 2-algebra, computing the sum of the numbers of leaves in the
first argument of each ϱ-redex contracted in a reduction, builds on that by interpreting variables
as 0, @ and ⋅ as addition, and ϱ as the 1-value of its first argument (a term).

Example 8. The rewrite systems in [6, Example 8] are trivially WN and locally Dyck [8, Defi-
nition 16] for the length measure, hence OWCR by [8, Theorem 19], so complete by Corollary 2.
(Local Dyckness always works for complete rewrite systems that are FB; cf. Remark 2.2.)

4 Conclusion

We have given an alternative complete method for establishing completeness. As also the
classical method is complete it’s a matter of taste and tool-support which one one prefers. It
should be interesting to find a (direct) measure suitable for simply typed λβ (cf. Example 4).

Acknowledgments I thank the reviewers for their feedback, despite me having uploaded an
old draft instead of the intended submission, for which I apologise.
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Abstract

The functional machine calculus (FMC) is a model of higher-order computation with
effects, and is known to be confluent. Here we re-prove confluence of the FMC via higher-
order term rewriting, embedding the FMC in a 3rd-order PRS. Our main contribution is a
higher-order version of the critical-pair-criterion that was developed by Okui for first-order
TRSs, requiring all multi–one critical peaks to be many–multi joinable.

1 The Functional Machine Calculus

The Functional Machine Calculus (FMC) is a model of higher-order computation with ef-
fects [1]. It generalizes the λ-calculus and is known to preserve its main properties of conflu-
ence and simply-typed termination, while it encodes reader/writer effects (state, I/O, probabili-
ties, nondeterminism) and strategies including call–by–name, call–by–value, and call–by–push–
value [3]. In this section we recapitulate the FMC in its traditional presentation. In Section 2
we show how it can be embedded in a 3rd-order positional pattern rewrite system. Via this
embedding confluence of the FMC is then regained as an instance of a critical pair criterion for
positional PRSs (Definition 2), generalising Okui’s criterion for TRSs [5], as shown in Section 3.

The intuition for the FMC is of λ-terms as instruction sequences for a simple stack machine.
Application M N , written [N ].M , pushes N to the stack and continues with M ; abstraction
λx.M , written ⟨x⟩.M , pops a term N and continues with {N/x}M (the substitution of N
for x in M). The FMC then consists of two generalizations. One, to multiple stacks, indexed
by locations a, b, c, . . . in which application and abstraction are parameterized, [N ]a.M and
a⟨x⟩.M . As well as the main stack, these model input and output streams, memory cells, and
random generators. Two, with the empty sequence ⋆ and sequential composition, implemented
by making the variable construct a prefix x.M ; this gives control over evaluation behaviour and
models strategies. Both generalizations have interesting consequences for reduction. First, a
redex consists of an application and abstraction at the same location, [N ]a . . . a⟨x⟩.M , possibly
with operations on other locations in between. Second, to substitute N for x in x.M involves
sequential composition N ;M .

Definition 1. FMC-terms are given by the following grammar, where a⟨x⟩.M binds x in M ,
and considered modulo α-equivalence. (Trailing . ⋆ may be omitted.)

M, N, P ::= ⋆ | x.M | [N ]a.M | a⟨x⟩.M

We define β-reduction by the rewrite rule schema below (closed under all contexts)

[N ]a.H. a⟨x⟩.M H. {N/x}M (a /∈ loc(H), bv(H) ∩ fv(N) = ∅)

∗Supported by EPSRC Project EP/R029121/1 Typed lambda-calculi with sharing and unsharing.
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where H is a head context with binding variables bv(H) and locations loc(H) as defined below,
writing H.M for H{M} (H with the hole {} replaced by M).

H ::= {} | [N ]a.H | a⟨x⟩. H
bv({}) = ∅ loc({}) = ∅

bv([M ]a.H) = bv(H) loc([M ]a.H) = loc(H) ∪ {a}
bv(a⟨x⟩. H) = bv(H) ∪ {x} loc(a⟨x⟩. H) = loc(H) ∪ {a}

Composition N ;M and substitution {M/x}N are capture-avoiding, and are as follows.

⋆ ;M = M [P ]a.N ;M = [P ]a. (N ;M)
x.N ;M = x. (N ;M) a⟨y⟩. N ;M = a⟨y⟩. (N ;M) (y /∈ fv(M))

{P/x}⋆ = ⋆ {P/x}[N ]a.M = [{P/x}N ]a. {P/x}M
{P/x}x.M = P ; {P/x}M {P/x}a⟨x⟩.M = a⟨x⟩.M
{P/x}y.M = y. {P/x}M (x ̸= y) {P/x}a⟨y⟩.M = a⟨y⟩. {P/x}M (y /∈ fv(P ))

The pure λ-calculus may be embedded in the FMC by choosing a main location λ, omitted
from terms for compactness, and defining λx.M = ⟨x⟩.M and M N = [N ].M .

Example 1. To model global store, a cell is a dedicated location a with lookup !a encoded by
a⟨x⟩. [x]a. x and update N := a ;M by a⟨ ⟩. [N ]a.M (where is a non-binding variable). The
following example term stores λf. f (f 3) to the cell a, and then retrieves it to call it on λy. y+1.
Overall, it should update a and return 5, which FMC reduction indeed exposes. (Underlining
indicates a redex, and colours trace subterms through translations and reductions.)

a := (λf. f (f 3)) ; !a (λy. y + 1) = a⟨ ⟩. [⟨f⟩. [[3]. f ]. f ]a. [⟨y⟩. [y]. [1].+]. a⟨x⟩. [x]a. x
a⟨ ⟩. [⟨y⟩. [y]. [1].+]. [⟨f⟩. [[3]. f ]. f ]a. ⟨f⟩. [[3]. f ]. f
a⟨ ⟩. [⟨f⟩. [[3]. f ]. f ]a. [[3]. ⟨y⟩. [y]. [1].+]. ⟨y⟩. [y]. [1].+
a⟨ ⟩. [⟨f⟩. [[3]. f ]. f ]a. 5

= a := (λf. f (f 3)) ; 5

2 Embedding the FMC in a PRS

We show the FMC can be embedded in a 3rd-order pattern rewrite system (PRS), with which
we assume familiarity [4, 9]. Since we will build on it below, we revisit the standard embedding
of the pure λ-calculus in a 2nd-order PRS ([4, Example 3.4],[9, Examples 11.2.6(i),11.2.22(ii)]).

Example 2. The PRS Lam has a single base type term, two simply typed constants for ab-
straction and application: lam : (term→ term)→ term and app : term→ term→ term, and rules:

beta : λFS.app(lamλx.F (x), S) → λFS.F (S)
eta : λS.lam(λx.app(S, x)) → λS.S

with variables x : term, F : term→ term and S : term, and rules, which are symbols in our setting
having the type of their lhs / rhs, beta : (term→ term)→ term→ term, and eta : term→ term.

Objects The objects of a PRS are simply typed λ-terms modulo αβη for a collection of base
types, and a signature of symbols. We refer to the simply typed λαβη-calculus as the sub-
stitution calculus of PRSs as it brings about the standard notions of matching, substitution
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and occurrence [8, 6]. We assume λ-terms to be in η-expanded form ([4, p. 5],[9, Conven-
tion 11.2.12]). Terms then are λ-terms also in β-normal form, serving as representatives (unique
up to α) of αβη-equivalence classes. The parameter passing of rewrite rules is brought about
by the substitution calculus, matching by β-expansion and substitution by β-reduction. To
separate the replacement aspect of rewrite rules from their parameter passing aspect [9, Defini-
tion 11.2.25(iv)], rewrite rules are closed. To facilitate defining occurrences below, we overline
a subterm of a λ-term to denote the λ-term (recursively) obtained by removing the overlining,
and if the subterm is a β-redex then contracting it and overlining the created β-redexes.

In [2, Lemma 2] we established that for first-order term rewriting there is a perfect rapport
between the inductive and geometric views of the notion of occurrence. We consider the higher-
order case: in the inductive view an occurrence of a pattern π in a λ-term t then is a β-expansion
of t to a λ-term (λx.s)π (cf. [8, Definition 2.9]), and in the geometric view a pat P is a certain
subset of the positions of the tree [4, p. 5] of t (cf. [9, Proposition 8.6.25]). To make the
rapport perfect, we restrict ourselves to occurrences of patterns [4, Definition 3.1] that are
rule-patterns [9, Definition 11.2.18(ii)], local [7, Footnote 4], and moreover such that the free
variables are in pre-order and the parameters in outside-in order; these are positional patterns:

Definition 2 (Inductive view). A positional pattern π is a closed λ-term of shape λF .f(t)
such that (head-defined) f is a function symbol and f(t) is of base type; ( linear) π is linear in
F , each Fi occurs once; and ( fully-extended) each F ∈ F occurs in π as F (x) where x is the
list of (η-expansions of) variables that are bound above F in f(t), in outside-in order. To avoid
clutter we may drop the initial binders F of π. We incongruously refer to such an F as a free
variable of π and to its arguments x as its parameters. A rule / PRS is positional if its lhs is
/ rules are. If for a vector π of positional patterns and λ-term t, we have (λF .s)π = t with s
linear in F , we speak of a multipattern π in t. They are taken up to permutation of π, F .

Definition 3 (Geometric view). A pat in a λ-term t is a non-empty set P of positions in the
tree1 of t such that ( convex) if p, q ∈ P then all positions on the path between p and q are in
P [2, Footnote 4]; ( rigid) if t(p) is a variable and p ∈ P , then it is bound by a λ-abstraction
at a position in P ; (base-fringe) t|p is of base type for p the root of P or a child not in P of
a position in P ; and (normal) if t(p) is an application and p ∈ P , then its left child is not the
position of a λ-abstraction. A multipat is a vector P of pairwise disjoint pats in t.

Example 3. For examples of patterns see [9, Example 11.2.19]. The lhs of beta is a positional
pattern. It would not be so anymore when swapping its initial binders from λFS into λSF
(pre-order violated). The lhs of eta is a pattern, but is not positional (full-extendedness violated).

For π the lhs of beta, we have {11, 111, 1111, 1112, 11121, 11122} is a pat; 11, 111, 1111 are
the positions from its root 11 toward the head symbol app, 11121 the position of abs, and 11122
that of λx. This is the greatest pat in π, its internal pat π̊. The only other pat in π is
{1112, 11121, 11122} corresponding to lamλx.F (x). For instance, {1112, 11121} is not a pat,
since the subterm λx.F (x) at position 11122 is not of base type violating (base-fringe), and
{112} is not a pat since (rigid) is violated by S being a free variable. For TRSs, a pat coincides
with a non-empty convex set of function symbol positions as in [2].

Multipatterns and multipats can be ordered by refinement ⊑. These orders correspond and
will allow us to state the notion of critical peak in lattice-theoretic terms [2].

Definition 4. (λG.((λF .s)u))π ⊑ (λG.((λF .s)u))π if both sides are multipatterns and s,
u are linear in F , G. For multipats, Q ⊑ P if each pat Q ∈Q is a subset of a pat P ∈ P .

1We employ t|p / t(p) to denote the subterm / symbol at position p in t ([4, p. 5] uses t/p for the former).
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Example 4. We have {{2, 21}, {222, 2221}} ⊑ {{2, 21, 22, 221, 222, 2221}} for multipats in
f(g(h(i(a)))). Likewise (λXY.f(X(h(Y (a)))) (λ z.g(z)) (λ z.i(z)) ⊑ (λZ.f(Z(a)))λ z.g(h(i(z)))
for multipatterns as witnessed by (λXY.(λZ.f(Z(a))) (λ z.X(h(Y (z))))) (λ z.g(z)) (λ z.i(z)).

) (λF.

PRS step

)(λF.

PRS step

β-reduction

)

β-expansionβ-expansion

(λFGH.
H

G

FFF

Figure 1: Carving out multipat from term by β-expanding into multipattern (left), and step
for PRS rule ℓ→ r via matching (β-expansion; middle) and substitution (β-reduction; right)

Lemma 1. Refinement ⊑ on multipats / multipatterns of a λ-term is a finite distributive lattice.
Multipatterns and multipats w.r.t. their respective notions of refinement ⊑, are isomorphic.

Proof idea. By extending the proof of-[2, Lemma 2] to positional PRSs. The isomorphism
between multipats and multipatterns is illustrated in Figure 1; for any multipat P in a λ-term
t a multipattern π may be carved out from t in that (λF .s)π = t for some s linear in F such
that the set of internal positions of the π in it trace [9] to the P in t, and vice versa.

Steps The steps of a PRS are terms over the signature extended with rules [9, Chapter 8].

Definition 5. A multistep of a PRS P is a term over its signature extended with its rule
symbols. This induces a rewrite system ◦−→P having terms as objects, multisteps as steps, with
source / target maps obtained substituting the lhs / rhs for the rule symbol [8, 6]; cf. Figure 1
(middle,right). Requiring to have one rule in a multistep yields steps →P.

Example 5. abs(λ y.beta(λx.app(x, x), y))) and eta(abs(λx.app(x, x))) are Lam-steps. Despite
being intensionally distinct, they are extensionally the same as they have the same sources
abs(λ y.(λFS.app(lamλx.F (x), S)) (λx.app(x, x), y))) = abs(λ y.app(abs(λx.app(x, x)), y)) =
(λS.lam(λx.app(S, x))) (abs(λx.app(x, x))) and targets abs(λ y.(λFS.F (S)) (λx.app(x, x), y))) =
abs(λ y.app(y, y)) = (λS.S) (abs(λx.app(x, x))).

Multisteps render traditional redex-orthogonality-talk obsolete [2]; redexes are orthogonal
because there is a multistep contracting them. Note →P ⊆ ◦−→P ⊆↠P [9, Lemma 11.6.24(ii)].

The FMC as fragment of a PRS The untyped λ-calculus is embedded in a fragment of
the 2nd-order PRS Lam, namely in terms where all variables are of type term. We show the
same holds for the FMC: its terms are embedded as a fragment of a 3rd-order PRS FMC.
The embedding hinges on that although the FMC (Definition 1) has a non-standard notion of
substitution, that may be represented by PRS substitution by replacing each ⋆ by a variable χ,
so that composition with N in the FMC is represented in FMC as substitution of N for χ.

Definition 6. The PRS FMC has a signature comprising for every location a, symbols lama :
((term→ term)→ term)→ term and appa : term→(term→ term)→ term, and rewrite rule schema:

betaH : λMPN.appa(H[lama(λx.M(x, x))], N) → λMPN.H[M(x, N)]
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where N , x, and x all have type term→ term (not η-expanded to avoid clutter) and H ranges
over contexts, compositions of basic contexts with the empty context 2, with a basic context
being of shape either appb(2, P (x)) or lamb(λx.2), for any location b distinct from a, and each
P ∈ P a fresh free variable having as parameters the variables bound by the contexts above it.

Terms of the FMC are represented by spines, FMC-terms λχ.S of type term→ term with:

S ::= χ | xS | appa(S, λχ.S) | lama(λx.S)

where χ is the unique variable of type term. We embed an FMC term M as λχ.⟨M⟩ and show
this fragment of FMC is well-behaved, where ⟨ ⟩ maps the FMC constructs as follows: (i) ⋆ is
mapped by ⟨ ⟩ to χ, that is, to the coccyx of a spine; (ii) x.M is mapped to x⟨M⟩, that is, to
the application of x to the embedding of M ; (iii) [N ]a.M is mapped to appa(⟨M⟩, λ χ.⟨N⟩);
and (iv) a⟨x⟩.M is mapped to lama(λx.⟨M⟩).
Lemma 2. Embedding the FMC in the λχ.S-fragment yields a bisimulation for and→betaH .

3 A Multi–One Critical Pair Criterion for the FMC

We generalise the critical pair criterion for confluence introduced in [5] from left-linear TRSs
to positional PRSs to obtain confluence of FMC, and hence (Lemma 2) of its λχ.S-fragment.

Definition 7. Multipatterns ς and ζ in term t are overlapping if ς ⊓ ζ ̸= ⊥, where ⊓ denotes
the meet w.r.t. refinement ⊑ and ⊥ the least element (t). The overlap is critical if moreover
ς ⊔ ζ = (λF.F̂ ) t with F̂ the η-expansion of F . This extends to peaks Φ ◦←− t→Ψ of multisteps
Φ = (λF .s)ϱ and Ψ = (λG.u)θ for rules ϱ : ℓ→ r and θ : g → d, via their multipatterns
(λF .s) ℓ and (λG.u) g. If Ψ is a step, we speak of a multi–one (critical) peak.

Example 6. We give two multi–one critical peaks for the following TRS [5, Example 1], with
our multi–one critical peaks corresponding to the critical pairs numbered (4) and (5) there:

α :λxyz.x+ (y + z)→λxyz.(x+ y) + z
γ : λxy.x+ y→λxy.y + x

λxyz.(z+y)+x
(λFGxyz.F (x,G(y,z))) γγ

◦←− λxyz.x+(y+z)→
(λHxyz.H(x,y,z))α

λxyz.(x+y)+z

λw.((x+y)+z)+w (λFGw.F (w,G(x,y,z))) γα ◦←− λw.w+(x+(y+z))→(λHw.H(w,x,y+z)α λw.(w+x)+(y+z)

where x = wxyz. The first multi–one peak has {111·{ε, 1, 11}, 111·{2, 21, 211}} as multipat for
the left multistep and {111·{ε, 1, 11, 2, 21, 211}} for the right.

Figure 2: Illustration of proof of Lemma 3 by splitting-off critical multi–one peak
.
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Lemma 3. If for a positional PRS P every critical multi–one peak is many–multi joinable, i.e.
if Φ ◦←− ·→Ψ ⊆↠P · P ◦←− for Φ,Ψ critical, then multi–one peaks are many–multi joinable.

Proof idea. Let s Φ ◦←− t→Ψ u be a multi–one peak. The geometric view, justified by Lemma 1,
for the following construction is illustrated in Figure 2 where the blue blob denotes t, the green
blobs the multipat of the multistep ◦−→Φ, and the red blob that of the step →Ψ.

We may write the multipattern ς of Φ as (λG′G.s′) ℓ′ℓ, and the multipattern ζ of Ψ as
(λF.u′) g, with ℓ those patterns in ς overlapping the pattern g (2 green blobs in the figure
overlapping the red one), and ℓ′ (1 green blob) the non-overlapping ones;

The join ς⊔ζ is then of shape (λG′F ′.v) ℓ′π with π being the minimal pattern refinable into

both ℓ and g. Thus, ς = (λG′G.(λG′F ′.v)G′s′′) ℓ′ℓ and ζ = (λF.(λG′F ′.v) ℓ′u′′) g for some
s′′ and u′′, with the multisteps Φ and Ψ obtained by replacing the left-hand sides ℓ′ℓ in ς and
g in ζ by rule symbols, and with (λG′G.(λG′F ′.v)G′s′′) ℓ′ℓ = ς ⊔ ζ = (λF.(λG′F ′.v) ℓ′u′′) g.
By minimality, π is the source of the critical multi-one peak for multistep Φ̂ and step Ψ̂ having
multipatterns (λG.s′′) ℓ and (λF.u′′) g, which is many–multi joinable by assumption, say by
valley↠Ψ̂′ ·Φ̂′ ◦←− for reduction Ψ̂′ and multistep Φ̂′. We conclude by plugging these into context

as in Figure 2 (right), yielding the reduction (λG′F ′.v) r′Ψ̂′ and the multistep (λG′F ′.v)ϱ′Φ̂′,
for r′ and ϱ′ the right-hand sides respectively the rules, corresponding to ℓ′.

Theorem 1. A positional PRS is confluent if multi–one critical peaks are many–multi joinable.

Proof. By Lemma 3 using →P ⊆ ◦−→P ⊆↠P for any positional PRS P.

Theorem 2. FMC reduction is confluent.

Proof. By Theorem 1 and Lemma 2 it suffices that all multi–one critical peaks of FMC are
many–multi joinable. There are still infinitely many such peaks, but these are uniformly shown
to be many–multi joinable: since in the FMC all patterns in a critical peak are on the same
spine, and patterns on the spine are not replicated, the peaks are even one–multi joinable.

References

[1] C. Barrett, W. Heijltjes, and G. McCusker. The functional machine calculus, 2022. To appear in
Mathematical Foundations of Programming Semantics (MFPS 2022). Available at http://people.
bath.ac.uk/wbh22/index.html#FMC2022.

[2] N. Hirokawa, J. Nagele, V. van Oostrom, and M. Oyamaguchi. Confluence by critical pair analysis
revisited. In CADE 27, volume 11716 of LNCS, pages 319–336. Springer, 2019.

[3] P.B. Levy. Call-by-push-value: A functional/imperative synthesis, volume 2 of Semantic Structures
in Computation. Springer Netherlands, 2003.

[4] R. Mayr and T. Nipkow. Higher-order rewrite systems and their confluence. TCS, 192(1):3–29,
1998.

[5] S. Okui. Simultaneous critical pairs and Church–Rosser property. In T. Nipkow, editor, RTA-98,
volume 1379 of LNCS, pages 2–16. Springer, 1998.

[6] V. van Oostrom. Confluence for Abstract and Higher-Order Rewriting. PhD thesis, Vrije Univer-
siteit, Amsterdam, March 1994.

[7] V. van Oostrom. Finite family developments. In H. Comon, editor, RTA-97, volume 1232 of LNCS,
pages 308–322. Springer, 1997.

[8] V. van Oostrom and F. van Raamsdonk. Weak orthogonality implies confluence: The higher order
case. In LFCS’94, volume 813 of LNCS, pages 379–392. Springer, 1994.

[9] Terese. Term Rewriting Systems, volume 55 of CTTCS. CUP, 2003.

30

http://people.bath.ac.uk/wbh22/index.html#FMC2022
http://people.bath.ac.uk/wbh22/index.html#FMC2022


On Confluence of Parallel-Innermost Term Rewriting∗
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Abstract
We revisit parallel-innermost term rewriting as a model of parallel computation on

inductive data structures. We propose a simple sufficient criterion for confluence of parallel-
innermost rewriting based on non-overlappingness. Our experiments on a large benchmark
set indicate the practical usefulness of our criterion. We close with a challenge to the
community to develop more powerful dedicated techniques for this problem.

1 Introduction

This extended abstract deals with a practical approach to proving confluence of (max-)parallel-
innermost term rewriting. We consider term rewrite systems (TRSs) as intermediate representa-
tion for programs operating on inductive data structures such as trees. More specifically, TRSs
can be seen as an abstraction of pattern matching on algebraic data types (ADTs), which are
particularly well-suited to the implementation of operations on inductive data structures. This
class of programs is gaining in importance in high-performance computing (HPC): among other
examples, the scheduler of the Linux kernel uses red-black trees; and many (also systems-level)
programming languages like Rust used in HPC feature ADTs. This leads to the need for
compilation techniques for pattern matching on ADTs that yield a highly efficient output. One
aspect of this problem pertains to the parallelisation of such programs. A small example for
such a program is given in Figure 1. fn size(&self) -> int {

match self {

&Tree::Node { v, ref left, ref right }

=> left.size() + right.size() + 1,

&Tree::Empty => 0 , } }

Figure 1: Tree size computation in Rust

Here, the recursive calls to left.size

() and right.size() can be done in par-
allel. In the following, we shall consider a
corresponding parallel-innermost rewrite re-
lation. Evaluation of TRSs (as a simple func-
tional programming language) with inner-
most rewrite strategies in massively parallel
settings such as GPUs is currently a topic of active research [14]. Confluence of parallel-innermost
rewriting enters the picture in several ways: for TRSs, confluence determines whether the specific
choice of rules makes a difference; moreover, confluence can be a prerequisite for applicability of
program analysis techniques (e.g., for finding complexity bounds [3]).

In Section 2, we recapitulate standard definitions and fix notations. Section 3 recapitulates the
notion of parallel-innermost rewriting on which we focus in this extended abstract. In Section 4,
we provide a first criterion for confluence of parallel-innermost rewriting. Section 5 provides
experimental evidence of the practicality of our criterion on a large standard benchmark set.
We conclude in Section 6.

Some of the results presented in this extended abstract, along with an application to
automated complexity bounds analysis of parallel-innermost rewriting, can be found also in the
conference paper [3].

∗This work was partially funded by the French National Agency of Research in the CODAS Project (ANR-17-
CE23-0004-01).
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2 Preliminaries

We assume familiarity with term rewriting (see, e.g., [2]) and recall standard definitions.

Definition 1 (Term Rewrite System, Innermost Rewriting). T (Σ,V) denotes the set of terms
over a finite signature Σ and the set of variables V. For a term t, the set Pos(t) of its
positions is given as: (a) if t ∈ V, then Pos(t) = {ε}, and (b) if t = f(t1, . . . , tn), then
Pos(t) = {ε} ∪⋃

1≤i≤n{iπ | π ∈ Pos(ti)}. The position ε is the root position of term t. For
π ∈ Pos(t), t|π is the subterm of t at position π, and we write t[s]π for the term that results
from t by replacing the subterm t|π at position π by the term s. A substitution σ is a partial
mapping from V to T (Σ,V). The application of a substitution σ to a term t, written tσ, is
defined inductively: (a) if t ∈ V and σ(t) is defined, then tσ = σ(t); (b) if t ∈ V and σ(t) is not
defined, then tσ = t; (c) if t = f(t1, . . . , tn), then tσ = f(t1σ, . . . , tnσ).

For a term t, Var(t) is the set of variables in t. If t has the form f(t1, . . . , tn), root(t) = f
is the root symbol of t. A term rewrite system (TRS) R is a set of rules {`1 → r1, . . . , `n → rn}
with `i, ri ∈ T (Σ,V), `i 6∈ V, and Var(ri) ⊆ Var(`i) for all 1 ≤ i ≤ n. The rewrite relation of
R is s →R t iff there are a rule ` → r ∈ R, a position π ∈ Pos(s), and a substitution σ such
that s = s[`σ]π and t = s[rσ]π. Here, σ is called the matcher and the term `σ is called the redex
of the rewrite step. If `σ has no proper subterm that is also a possible redex, `σ is an innermost
redex, and the rewrite step is an innermost rewrite step, denoted by s i→R t.

ΣRd = {f | f(`1, . . . , `n) → r ∈ R} and ΣRc = Σ \ ΣRd are the defined and constructor
symbols of R. We may also just write Σd and Σc.

For a relation →, →+ is its transitive closure and →∗ its reflexive-transitive closure. An
object o is a normal form wrt a relation → iff there is no o′ with o → o′. A relation → is
confluent iff s→∗ t and s→∗ u implies that there exists an object v with t→∗ v and u→∗ v.

Example 1 (size). Consider the TRS R with the following rules modelling the code of Figure 1.

plus(Zero, y) → y size(Nil) → Zero
plus(S(x), y) → S(plus(x, y)) size(Tree(v, l, r)) → S(plus(size(l), size(r)))

Here ΣRd = {plus, size} and ΣRc = {Zero,S,Nil,Tree}. We have the following innermost rewrite
sequence, where the used innermost redexes are underlined:

size(Tree(Zero,Nil,Tree(Zero,Nil,Nil))) i→R S(plus(size(Nil), size(Tree(Zero,Nil,Nil))))
i→R S(plus(Zero, size(Tree(Zero,Nil,Nil)))) i→R S(plus(Zero,S(plus(size(Nil), size(Nil)))))
i→R S(plus(Zero,S(plus(Zero, size(Nil))))) i→R S(plus(Zero,S(plus(Zero,Zero))))
i→R S(plus(Zero,S(Zero))) i→R S(S(Zero))

This rewrite sequence uses 7 steps to reach a normal form.

3 Parallel-Innermost Rewriting

The notion of parallel-innermost rewriting dates back at least to the year 1974 [15]. Informally,
in a parallel-innermost rewrite step, all innermost redexes are rewritten simultaneously. This
corresponds to executing all function calls in parallel using a call-by-value strategy on a machine
with unbounded parallelism [4]. In the literature [13], this strategy is also known as “max-
parallel-innermost rewriting”.
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Definition 2 (Parallel-Innermost Rewriting [6]). A term s rewrites innermost in parallel to t
with a TRS R, written s i−→‖ R t, iff s i→+

R t, and either (a) s i→R t with s an innermost redex,
or (b) s = f(s1, . . . , sn), t = f(t1, . . . , tn), and for all 1 ≤ k ≤ n either sk

i−→‖ R tk or sk = tk is
a normal form.

Example 2 (Example 1 continued). The TRS R from Example 1 allows the following parallel-
innermost rewrite sequence, where innermost redexes are underlined:

size(Tree(Zero,Nil,Tree(Zero,Nil,Nil))) i−→‖ R S(plus(size(Nil), size(Tree(Zero,Nil,Nil))))
i−→‖ R S(plus(Zero,S(plus(size(Nil), size(Nil))))) i−→‖ R S(plus(Zero,S(plus(Zero,Zero))))
i−→‖ R S(plus(Zero,S(Zero))) i−→‖ R S(S(Zero))

In the second and in the third step, two innermost steps each happen in parallel. An innermost
rewrite sequence without parallel evaluation necessarily needs two more steps to a normal form
from this start term, as in Example 1.

4 Confluence of Parallel-Innermost Rewriting

Given a TRS R, we wish to prove (or disprove) confluence of this relation i−→‖ R. Apart from
intrinsic interest in confluence as an important property of a rewrite relation, we are also
motivated by applications [3] of confluence proofs to finding lower bounds for the length of the
longest derivation with i−→‖ R from basic terms, i.e., terms f(t1, . . . , tk) where f is a defined
symbol and all ti are constructor terms. This notion of complexity of a TRS R, which is
parametric in the size of the start term, is also known as runtime complexity [9].1

To this end, might we even reuse confluence of innermost rewriting or of full rewriting (and
corresponding tools) as sufficient criteria for confluence of parallel-innermost rewriting?

Alas, by the following example, in general we have to answer this question in the negative.

Example 3 (Confluence of i→R Does Not Imply Confluence of i−→‖ R). To see that we cannot
prove confluence of i−→‖ R just by using a standard off-the-shelf tool for confluence analysis of
innermost or full rewriting [5], consider the TRS R = {a→ f(b, b), a→ f(b, c), b→ c, c→ b}.
For this TRS, both i→R and →R are confluent. However, i−→‖ R is not confluent: we can rewrite
both a i−→‖ R f(b, b) and a i−→‖ R f(b, c), yet there is no term v such that f(b, b) i−→‖ ∗

R v and
f(b, c) i−→‖ ∗

R v. The reason is that the only possible rewrite sequences with i−→‖ R from these terms
are f(b, b) i−→‖ R f(c, c) i−→‖ R f(b, b) i−→‖ R . . . and f(b, c) i−→‖ R f(c, b) i−→‖ R f(b, c) i−→‖ R . . . ,
with no terms in common.

Thus, in general a confluence proof for →R or i→R does not imply confluence for i−→‖ R.
Intuitively, the reason for non-confluence for i−→‖ R in Example 3 is the non-termination of i−→‖ R.
We leave the following open conjecture to future work.

Conjecture 1. Let R be a TRS whose innermost rewrite relation i→R is terminating. Then
i→R is confluent iff i−→‖ R is confluent.

1The details of our approach to finding complexity bounds are outside of the scope of the present extended
abstract and can be found in [3]; what matters here is that it provides an application for techniques to prove
confluence of parallel-innermost rewriting. Thus, more powerful techniques for proving confluence of parallel-
innermost rewriting potentially allow for larger applicability of techniques for finding lower bounds for runtime
complexity of parallel-innermost rewriting.
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To devise a sufficient criterion for confluence of i−→‖ R, recall that confluence means: if a term
s can be rewritten to two different terms t1 and t2 in zero or more steps, then it is always possible
to rewrite t1 and t2 in zero or more steps to one and the same term u. For parallel-innermost
rewriting, the redexes that get rewritten are fixed: all the innermost redexes simultaneously.
Thus, s can reach two different terms t1 and t2 only if at least one of these redexes can be
rewritten in two different ways using i→R.

The following standard definition of a non-overlapping TRS will be very helpful for a sufficient
criterion of confluence of i−→‖ R.

Definition 3 (Non-Overlapping). A TRS R is non-overlapping iff for any two rules `→ r, u→
v ∈ R where variables have been renamed apart between the rules, there is no position π in `
such that `|π /∈ V and the terms `|π and u unify.

Using non-overlappingness, a sufficient criterion that a given redex has a unique result from
a rewrite step is given in the following.

Lemma 1 ([2], Lemma 6.3.9). If a TRS R is non-overlapping, and both s→R t1 and s→R t2
with the used redex of both rewrite steps at the same position, then t1 = t2.

With the above reasoning, this lemma directly gives us a sufficient criterion for confluence of
parallel-innermost rewriting.

Corollary 1 (Confluence of Parallel-Innermost Rewriting). If a TRS R is non-overlapping,
then i−→‖ R is confluent.

Here left-linearity of R (i.e., in all rules `→ r ∈ R, every variable occurs at most once in `),
as in Rosen’s criterion for confluence of full rewriting [12], is not required.

Example 4 (Example 2 continued). Our TRS R from Example 1 and Example 2 is non-
overlapping and, by Corollary 1, its relation i−→‖ R is confluent.

The reasoning behind Corollary 1 can be generalised to arbitrary parallel rewrite strategies
where the redexes that are rewritten are fixed, such as (max-)parallel-outermost rewriting [13].

We get two follow-up questions:

1. How powerful is Corollary 1 for proving confluence of i−→‖ R in practice?

2. Can we really not do better than Corollary 1?

5 Experiments

To assess the first question, we used the implementation of the non-overlappingness check
in the automated termination and complexity analysis tool AProVE [7]. To demonstrate
the effectiveness of our implementation, we have considered the 663 TRSs from category
Runtime Complexity Innermost Rewriting of the Termination Problem Database (TPDB),
version 11.2 [17]. The TPDB is a collection of examples used at the annual Termination and
Complexity Competition [8, 16]. The above category of the TPDB is the benchmark collection
used specifically to compare tools that infer complexity bounds for runtime complexity of
innermost rewriting. As both the TPDB and also COPS [10], the benchmark collection used in
the Confluence Competition [5], currently do not have a specific benchmark collection focused
on parallel-innermost rewriting, we used this benchmark collection for our first experiment.2

2Our experimental data as well as all examples are available online [1].
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In this experiment, AProVE determined for 447 out of 663 TRSs (about 67.4%) that they
are non-overlapping. By Corollary 1, this means that their parallel-innermost rewrite relations
are confluent. Thus, already with the simple (and efficiently checkable) criterion of Corollary 1
we cover a large number of TRSs occurring “in the wild”.

However, the nature of the benchmark set also plays a significant role. As a benchmark
collection for our second experiment, we downloaded the 570 unsorted unconditional TRSs of
COPS.3 While the TRSs in this subset of COPS are usually analysed for confluence of full
rewriting, we analysed whether the TRSs are confluent for parallel-innermost rewriting. Our
implementation determined that 115 of the 570 TRSs (about 20.2%) are non-overlapping, which
implies parallel-innermost confluence. The significantly lower success rate for this benchmark
set is not surprising: COPS collects TRSs that provide a challenge to confluence analysis tools,
whereas the analysed subset of the TPDB contains TRSs which are interesting specifically for
runtime complexity analysis.

This reinforces the second question: Can we not do better than this? Corollary 1 already
fails for such natural examples as a TRS with the following rules to compute the maximum
function on natural numbers:

max(Zero, x) → x
max(x,Zero) → x

max(S(x),S(y)) → S(max(x, y))

Here one can arguably see immediately that the overlap between the first and the second rule, at
root position, is harmless: if both rules are applicable to the same redex, the result of a rewrite
step with either rule will be the same (max(Zero,Zero) i→R Zero). However, in general, more
powerful criteria for confluence of parallel-innermost rewriting would be desirable.

A natural direction for this research would be to investigate whether other existing criteria
for confluence of full rewriting can be adapted to parallel-innermost rewriting. For example, one
might investigate whether a variant of the criterion by Knuth and Bendix [11] using termination
and joinability of critical pairs as a criterion for confluence of full rewriting could also be applied
to parallel-innermost rewriting. We leave this question to future work.

6 Conclusion

We are not aware of other work that explicitly discusses automatically checkable criteria for
confluence of parallel-innermost rewriting. As such, this extended abstract tries to make a
first attempt at filling this gap, by using non-overlappingness as a sufficient criterion. Our
experiments indicate that non-overlappingness provides a good “baseline” for a sufficient criterion
for confluence of parallel-innermost rewriting. At the same time, techniques based on checks
for non-overlappingness are one of the most basic tools in a confluence prover’s toolbox. Thus,
this paper also poses the challenge to the community to develop stronger techniques for proving
(and disproving!) confluence of parallel-innermost rewriting.

Acknowledgements. We thank the anonymous reviewers for many helpful remarks and
suggestions.

3The download took place on 28 June 2022.
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Abstract

We present a tool GSOL, a confluence checker for GHC. It checks the confluence property for
rewrite rules in a Haskell program by using the confluence checker SOL (Second-Order Laboratory).
The Glasgow Haskell Compiler (GHC) allows the user to use rewrite rules to optimize Haskell pro-
grams in the compilation pipeline. Currently, GHC does not check the confluence of the user-defined
rewrite rules. If the rewrite rules are not confluent then the optimization using these rules may produce
unexpected results. Therefore, checking the confluence of rewrite rules is important. We implement
GSOL using the plugin mechanism of GHC.

1 Introduction
The Glasgow Haskell Compiler (GHC) is an open source compiler and interactive environment for the
functional language Haskell. It has builtin transformation rules to optimize Haskell programs during
the compilation. The user can also add rewrite rules to a program to specify optimizing transformations
[13]. The notion of confluence is one of the important properties of rewrite rules known in the theory
of rewriting. Confluence guarantees the uniqueness of normal forms, which is particularly desirable
in functional programming. However, GHC does not attempt to check the confluence of user-defined
rewrite rules.

In this paper, we present GSOL, a GHC plugin to check the confluence of rewrite rules in a Haskell
program. It uses a modified version of confluence checker, Second-Order Laboratory (SOL) [9, 10].
that can cope with higher-order polymorphic rules. To illustrate our work, we consider the following
Haskell program that involves two rewrite rules.

module F where e = f 99

{-# RULES {-# NOINLINE f #-}

"f/0" forall x. f x = 0 f :: Integer -> Integer

"f/1" forall x. f x = 1 f x = 0

#-}

The code within the {-# ... #-} is called a pragma 1. In the RULES pragma, there are two rules
named "f/0" and "f/1". If the the compiler chooses to apply the rule "f/0" then the expression f
99 is rewritten to 0. If it chooses to apply the rule "f/1" then the expression f 99 is rewritten to 1.
Therefore, they are not confluent. But the GHC compiler does not notice this non-confluence.

To the best of our knowledge, there is no tool to check the confluence of rewrite rules directly from
a Haskell program. In the field of term rewriting, a few confluence checkers for higher-order rewrite
systems have been developed [16, 15, 9]. We use a higher-order modified version of the tool SOL
[9, 10] to check the confluence of GHC rewrite rules. Since SOL has participated in the Higher-Order
Rewriting category of the International Confluence Competition 2018 [1] and 2020 [3], and has shown
that its effectiveness.

This work. In the previous works on rewrite rules for optimizations including [7, 13] confluence
and termination of rewrite rules have not been checked automatically although ensuring them has been
recognized as an important problem. In this work, we solve this problem by applying the result of
well-established rewriting technology to the real-world functional programming language Haskell. We
use an automatic confluence checker SOL to check the confluence of GHC rewrite rules in a Haskell
program.

1The NOINLINE pragma instructs the compiler not to expand f 99 by using the function definition. Without this indication,
f 99 is inlined to 0 before applying the rewrite rules, resulting that no rewrite rules are fired.
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2 Background

GHC. The compilation process of a Haskell program consists of
three big steps: frontend, optimizer, and backend. The frontend consists of parsing,
type checking and the transformation into the GHC’s intermediate language called
GHC Core, implementing System FC [14]. A GHC Core expression consists of vari-
ables, literals, abstractions, applications and variable bindings. The optimizer opti-
mizes the GHC Core program through various transformations. The simplifier imple-
ments most of those transformations using a set of built-in rules. The simplifier can
also use rewrite rules specified in the program. The optimization of a GHC Core pro-
gram is divided in a series of Core-to-Core translations. The simplifier is one of them.
The role of the backend is to generate code for different platforms.

GHC plugins. The plugin mechanism of GHC [6] allows programmers to insert their
own passes in the compilation pipeline. We use it to implement a confluence checker.
Our plugin receives a Core program, checks local confluence and termination, and
outputs the result of the checks but does not modify the Core program.

GHC rewrite rules. The user can use rewrite rules in a Haskell program to teach the compiler opti-
mizing transformations specific to their programs [13]. The syntax of rewrite rules is:

{-# RULES

"name" forall <var>...<var>. f <expr> = <expr>

...

#-}

The left-hand side of a rule must be a function application f <expr> where the function f is in the
scope. The left-hand side and right-hand side of the rewrite rules are parsed as Core expressions at the
compile time and forms rewrite rules on Core, which we call Core rules.

2.1 Method for checking confluence
To check confluence, we use the well-known Newman’s lemma, stating “termination and local conflu-
ence implies confluence”. To prove local confluence, we should check all possible situations that admit
two ways of rewriting, and also to check their convergence. Checking the joinability of critical pairs,
we conclude local confluence [2]. Critical pairs can be enumerated by computing overlaps between the
left-hand sides of rules using high-order unification.

Example: confluence of map/map. Consider the familiar map function on lists, and the following
rewrite rule, which translates the composition of two maps to a single map.

{-# RULES

"map/map" forall f g xs. map f (map g xs) = map (f.g) xs; #-}

The rhs is more efficient than the lhs because it traverses a list once rather than twice in the lhs. There-
fore, this is an optimisation rule. This is actually an example of “Playing by the Rule” [13]; it is also
used in several libraries such as Data.Text. Termination of this rule is easy because the number of map
decreases by each application of the rule. Our tool GSOL outputs the following critical pair. There are
two redexes at the topmost expression: the whole expression (rewriting to the lower left) and an inner
map expression (rewriting to the lower right).

map(F,map(G,map(G′,XS)))

(map/map)

xxqqq
qqq

qqq
qq

(map/map)

&&MM
MMM

MMM
MMM

map(F ◦ G, map(G’,XS))

(map/map)
��

(MAP) map(F,map(G ◦ G’, XS))

(map/map)
��

map((F ◦ G) ◦ G’, XS) , map(F ◦ (G ◦ G’), XS)
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As presented above, this shows a non-joinable critical pair and there are two different normal forms by
the (map/map) rewrite rule. To make the rewrite system confluent, we need to add a rule to make these
two equal. One may prefer to add a rule

{-# RULES

"o-assoc" forall f g h. f.(g.h) = (f.g).h; #-}

By adding this rule, the above critical pair becomes joinable. However, adding this rule induces an
additional critical pair, which GSOL points out:

F ◦ (G ◦ (H ◦ H’))
(o-assoc)

wwnnn
nnn

nnn (o-assoc)

''PP
PPP

PPP
P

(F ◦ G) ◦ (H ◦ H’)

(o-assoc)
��

(COMP) F ◦ ((G ◦ H) ◦ H’)

(o-assoc)
��

((F ◦ G) ◦ H) ◦ H’ = ((F ◦ G) ◦ H) ◦ H’

Fortunately, this critical pair is joinable. Moreover, GSOL checks that the system
(map/map)(o − assoc) is terminating. By applying Newman’s lemma, which we infer that the rewrite
system (map/map)(o − assoc) is confluent.

3 Implementation

SOL. SOL is an implementation of a formal framework of second-order computation systems, which
is a computational counterpart of second-order algebraic theories [4, 5]. This framework has been used
in [9].

Second-order computation systems are based on second-order abstract syntax given by the language
of meta-terms [8]:

t ::= x | x.t | f (t1, . . . , tn) | M[t1, . . . , tn].

These forms are respectively variables, abstractions, and function terms, and the last form is called a
meta-application. A meta-application M[t1, . . . , tn] means: when we instantiate M with a term s, free
variables of s are replaced with (meta-)terms t1, . . . , tn. Computation rules are pairs of meta-terms.
Based on polymorphic computation systems presented in [10], we modified SOL to cope with higher-
order polymorphic computation systems and use it as the checking engine of GSOL.

We implemented GSOL as a Core plugin to check the confluence of GHC rewrite rules. Our plugin
is installed into the beginning of the optimization pipeline. The plugin proceeds as the following three
steps:

1. Collecting the Core rules.
2. Translating them to SOL rules.
3. Calling the modified SOL for checking. SOL performs the checking functions and print the output

to the standard output.

The translation of Core rules is done by applying a structural recursive translation of Core terms to both
sides of each rule. It is basically a known encoding method used in [9, 10], which encodes λ-terms to
meta-terms. We have developed a stand-alone shell command gsol for Haskell files,

4 Example: Arrow
In this section, we demonstrate GSOL by examining the Arrow library of GHC. Arrows [12, 17] provide
a way to programming with various computational effects in Haskell. The Control.Arrow module in
the base package of GHC has provided arrows. We excerpt the type class and rules described in the file
Control.Arrow in Fig. 1.

The Arrow inherits the Category type class, hence the composition (.) is inherited from it.
Note that the often used left-to-right arrow composition “>>>” has been defined in terms of (.) in
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module Control.Arrow
class Category a => Arrow a where
arr :: (b -> c) -> a b c
first :: a b c -> a (b,d) (c,d)
second :: a b c -> a (d,b) (d,c)
(***) :: a b c -> a b’ c’ -> a (b,b’) (c,c’)

{-# RULES
"compose/arr" forall f g .

(arr f) . (arr g) = arr (f . g)

"first/arr" forall f .
first (arr f) = arr (first f)

"second/arr" forall f .
second (arr f) = arr (second f)

"product/arr" forall f g .
arr f *** arr g = arr (f *** g)

"compose/first" forall f g .
(first f) . (first g) = first (f . g)

"compose/second" forall f g .
(second f) . (second g) = second (f . g)

Figure 1: Rules in Control.Arrow

Control.Category. The method arr embeds a pure function into an arrow. The method first adds
the identity arrow in parallel [11].

Instances of the arrow class must satisfy 9 laws ([17], Fig. 1: Arrow equations), which are based
on the semantics of arrows, Freyd categories [11]. The rules in Fig. 1 are some of them. For example,
"compose/arr" expresses that arr is a functor.

Using GSOL, we try to check the confluence of the rules. Let us see the translated polymorphic com-
putation system. It reveals that the rules actually have various type arguments, type class dictionaries
and functions (such as dC, $p1Arrow).

% gsol Arrow.hs -s
-- Signature --
o : (cat:k->k->*,Category(cat),b:k,c:k,a:k,cat(b,c),cat(a,b)) -> cat(a,c)
arr : (a:*->*->*,Arrow(a),b:*,c:*,(b -> c)) -> a(b,c)
first : (a:*->*->*,Arrow(a),b:*,c:*,d:*,a(b,c)) -> a(pair(b,d),pair(c,d))
..
(compose/arr) o( @cat,dC ,@b,@c,@a,arr(@cat,dA,@b,@c,x1.F[x1]),arr(@cat,dA1,@a,@b,x2.G[x2]))

=> arr(@cat,dA,@a,@c,x3.o( %->,$fCategoryTYPE-> ,@b,@c,@a,F,G,x3))

(first/arr) first(@a,dA,@b,@c,@d,arr(@a,dA1,@b,@c,x14.F[x14]))
=> arr(@a,dA,%pair(b,d),%pair(c,d),x15.first(%->,$fArrow->,@b,@c,@d,F,x15))

(compose/first) o(@a,dC,%pair(b1,d),%pair(c,d),%pair(b,d),first(@a,dA,@b1,@c,@d,F),first(@a,dA1,@b,@b1,@d,G))
=> first(@a,dA,@b,@c,@d,o(@a,$p1Arrow(@a,dA),@b1,@c,@b,F,G))

In (compose/arr), we see that the compositions “o” in lhs and rhs are actually different instances,
as the highlighted arguments show. The lhs uses the composition of a category (because of @cat),
while the rhs uses the composition of pure functions (because of %->, meaning the pure function type
constructor), although this information was implicit in the source rule. Since arr embeds a pure function
into an arrow, this description that rhs’s composition is for %-> is correct.

(first/arr) first( @a,dA ,@b,@c,@d,arr(@a,dA1,@b,@c,x.F[x]))

=> arr(@a,dA,%pair(b,d),%pair(c,d),x.first( %->,$fArrow-> ,@b,@c,@d,F,x))

Although the source rule "first/arr" looks like just swapping first and arr, the actual polymorphic
computation rule (first/arr) is not simply so. The lhs’ first is an instance at a category a, while
the rhs’ first is an instance at the pure function type “->”.

Next we try to check local confluence GSOL found that there are 8 critical pairs and all are non-
joinable. Let us excerpt one of them with suppressing the type arguments for brevity.

% gsol Arrow.hs cri
..
5: Overlap (compose/first)-(first/arr)--- dA’|-> dA, F|-> arr(dA1’,F’) --------------------------------------------------

(compose/first) o(dC, first(dA,F) ,first(dA1,G)) => first(dA,o($p1Arrow(dA),F,G))

(first/arr) first(dA’,arr(dA1’,F’)) => arr(dA’,x17’.first($fArrow->,F’,x17’))

o(dC,first(dA,arr(dA1’,F’)),first(dA1,G))
first(dA,o($p1Arrow(dA),arr(dA1’,F’),G)) <-(compose/first)-∧-(first/arr)-> o(dC,arr(dA,x.first($fArrow->,F’,x)),first(dA1,G))

---> first(dA,o($p1Arrow(dA),arr(dA1’,F’),G)) =#= o(dC,arr(dA,x.first($fArrow->,F’,x)),first(dA1,G)) <---
..
#NON 8 joinable... (Total 8 CPs)
NO
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The diagram actually expresses the following situation, where dictionaries are attached as subscripts:

5 : firstdA(arrdA1′ (F′)) •dC firstdA1(G)
(compose/first)

xxqqq
qqq

qqq (first/arr)

&&MM
MMM

MMM
M

firstdA(arrdA1′ (F’) • G) , arrdA1′ (first$fArrow→(F’)) •dC firstdA1(G)

The entire expression can be rewritten using the rule (compose/first) that moves composition
(•) into the application of first. The underlined sub-expression can also be rewritten using the rule
(first/arr) that swaps the order of application of first and arr. Since both sides of the critical
pair (CP) are normal forms, it shows non-confluence.

To make this CP joinable, one way is to add a rule

{#- RULES "not-generally-hold" forall f. arr f = f -#}

but it is semantically invalid for general arrows. This law holds only for the arrows of pure functions.
Another way is to add a new rule orienting the CP.

In summary, we have found the following by GSOL’s confluence checking. Since the type argu-
ments in source rules are implicit, we need to be careful that the rules actually use intended instances.
The rewrite rules in Control.Arrow are non-confluent, which has not been reported elsewhere.
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Abstract

Conversion equivalence and normalization equivalence are important properties of two
rewrite systems. We investigate how many constants are needed to reduce these properties
to their ground versions for linear variable-separated rewrite systems. Our results are
implemented in the decision tool FORT-h and formalized in Isabelle/HOL. The latter
enables the validation of the proofs produced by the former in the certifier FORTify.

1 Introduction

FORT-s is a tool to synthesize rewrite systems (TRSs) that satisfy a given property expressible
in the first-order theory of rewriting. It is based on FORT-h, a tool that implements a decision
procedure for the first-order theory of rewriting for the class of linear variable-separated TRSs,
which comprises all left-linear right-ground TRSs. We refer to [3, 4, 6] for further details. It is
of interest to synthesize TRSs that depend on one or more other TRSs. This can be done by
passing additional TRSs to FORT-s in addition to a formula which references multiple systems.
The additional systems are then also passed to the decision procedure. For example, if we want
to transform the TRS R consisting of the rules

a→ b f(a)→ b g(a, x)→ f(a)

into an equivalent complete (confluent and terminating) TRS, the command

fort-s "[0](WCR & SN) & forall s, t ([0] s <->* t <=> [1] s <->* t)" file.trs

with file.trs containing R (in COPS format) is executed. The latter is referred to by the
index 1 in the formula whereas 0 refers to the TRS to be synthesized. The command returns
the TRS S consisting of the rules

a→ b f(b)→ g(a, a) g(b, b)→ a

The result is complete (as demanded by "[0](WCR & SN)"), but not equivalent to R! The reason
is that "forall s, t ([0] s <->* t <=> [1] s <->* t)" ensures equivalence on ground terms
(since the decision procedure implemented in FORT-h is based on tree automata techniques) but
this is not the same as equivalence on all terms; we have g(a, x)↔∗

R a but g(a, x)↔∗
S a does

not hold.
In [2] we presented formalized results that allow reducing confluence-related properties

(confluence CR, unique normal forms with respect to reduction UNR and conversion UNC,
commutation COM) to properties on ground terms by adding fresh constants to the underlying
signature. In this note we present similar results for two different notions of equivalence,
conversion equivalence and normalization equivalence.

∗This work was supported by the Austrian Science Fund (FWF) project P30301.
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2 Preliminaries

In this paper we drop the usual constraints on TRSs by allowing terms on the right-hand sides
of rules to contain variables not appearing on the left, and left-hand sides to be variables. A
rule ℓ→ r is called variable-separated if Var(ℓ) ∩ Var(r) = ∅. A TRS is variable-separated if all
its rules are variable-separated. Two TRSs R and S over a common signature F are conversion
equivalent (CE) if the relations ↔∗

R and ↔∗
S coincide on T (F ,V). They are ground conversion

equivalent (GCE) if the relations coincide on the set T (F) of ground terms. We call R and S
normalization equivalent (NE) if the relations →!

R and →!
S coincide on T (F ,V) and ground

normalization equivalent (GNE) if this holds for T (F).
A binary predicate P on terms over a given signature F is closed under multi-hole contexts if

P (C[s1, . . . , sn], C[t1, . . . , tn]) holds whenever C is a multi-hole context over F with n ⩾ 0 holes
and P (si, ti) holds for all 1 ⩽ i ⩽ n. In the results presented in the next section we make use
of the following result from [2]. Here →∗ϵ∗

A abbreviates →∗
A · →ϵ

A · →∗
A, so s→∗ϵ∗

A t if s→∗
A t

contains a root step.

Lemma 1. Let A be a TRS over some signature F and let P be a binary predicate that is
closed under multi-hole contexts over F . If s →∗ϵ∗

A t =⇒ P (s, t) for all terms s and t then
s→∗

A t =⇒ P (s, t) for all terms s and t.

Rewrite sequences involving root steps play an important role for linear variable-separated
TRSs since they permit the use of different substitutions for the left and right-hand side of the
employed rewrite rule, due to variable separation. We also make use of [2, Lemma 8].

Lemma 2. Let R be a linear TRS over a signature F that contains a constant c which does
not appear in R. If s→∗

R t with c ∈ Fun(s) \ Fun(t) then s[u]p →∗
R t using the same rewrite

rules at the same positions, for all terms u and positions p ∈ Pos(s) such that s|p = c.

3 Results

The results in this section are formalized in Isabelle/HOL [1]. Similar to the example in the
introduction, the following example shows that the two equivalence properties are not equivalent
to their ground versions.

Example 3. The linear variable-separated TRSs

R : f(x)→ a S : f(a)→ a f(f(a))→ a

over the signature F = {f, a} are neither normalization equivalent nor conversion equivalent as
can be seen from f(x)→!

R a and f(x) ̸↔∗
S a. Since every ground term rewrites in R and S to the

unique ground normal form a, the TRSs are ground normalization equivalent as well as ground
conversion equivalent. However, adding a single fresh constant c to the signature is sufficient
to reproduce the counterexample: f(c)→!

R a and f(c) ̸↔∗
S a. So the TRSs are neither ground

normalization equivalent nor ground conversion equivalent over the extended signature F ⊎ {c}.
In later proofs we will limit the rewrite sequences under consideration to those containing

root steps by instantiating Lemma 1

• with P1(s, t) : s→∗
S∪S− t and R∪R− for A in proofs related to CE, and

• with P2(s, t) : t ∈ NFR =⇒ s→∗
S t and R for A in proofs related to NE.
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Note the identity →R∪R− =↔R in the first case. We also use the symmetric instances, with
R and S switching places, for both properties. Both P1 and P2 are closed under multi-hole
contexts. By considering only sequences containing root steps we can use different substitutions
on the left and right of the sequence, due to variable-separation. These substitutions will usually
introduce fresh constants in the terms. We will also use Lemma 2 in subsequent proofs to remove
these additional constants from rewrite sequences as follows. Let σc denote the substitution
mapping all variables to c. If sσc →∗

R t then s→∗
R t by repeatedly applying Lemma 2 (to each

occurrence of c in sσc), assuming c appears neither in R nor in t.
A single fresh constant suffices to reduce conversion equivalence to ground conversion

equivalence.

Theorem 4. Linear variable-separated TRSs R and S over a common signature F such that
T (F) ̸= ∅ are conversion equivalent if and only if R and S are ground conversion equivalent
over the signature F ⊎ {c}.
Proof. For the if direction we assume that R and S are ground conversion equivalent over
F ⊎ {c}. Due to Lemma 1 (instantiated with P1) and symmetry, it suffices to show the
inclusion ↔∗ϵ∗

R ⊆ ↔∗
S on terms in T (F ,V). Suppose s↔∗ϵ∗

R t. Let d ∈ F be a constant, whose
existence is guaranteed by the assumption T (F) ̸= ∅, and consider the substitutions σc and σd
mapping all variables to the constants c and d respectively. Closure under substitutions and
variable separation yields sσc ↔∗ϵ∗

R tσc and sσc ↔∗ϵ∗
R tσd. Ground conversion equivalence gives

sσc ↔∗
S tσc and sσc ↔∗

S tσd, and thus also tσc ↔∗
S tσd. Using Lemma 2 yields s↔∗

S tσd and
t↔∗

S tσd. Hence s↔∗
S t as desired.

For the only-if direction we assume that R and S are conversion equivalent over F . Consider
s↔∗

R t with s, t ∈ T (F ⊎ {c}) and let ϕcx(·) be the function that replaces all occurrences of the
constant c with the variable x in terms. Since the constant c does not appear in R, we obtain
ϕcx(s) ↔∗

R ϕcx(t) from s ↔∗
R t. Conversion equivalence yields ϕcx(s) ↔∗

S ϕcx(t). By choosing a
variable x /∈ Var(s) ∪ Var(t), the latter implies s↔∗

S t by closure under substitutions.

Two fresh constants are required to reduce normalization equivalence to its ground version.

Theorem 5. Linear variable-separated TRSs R and S over a common signature F are normal-
ization equivalent if and only if R and S are ground normalization equivalent over F ⊎ {c, d}.
Proof. The only-if direction can be proved with the methods used in the proof of Theorem 4.
For the if direction we assume that R and S are ground normalization equivalent over F ⊎{c, d},
which implies NFR = NFS . Hence, it remains to show that s→∗ϵ∗

R t with t ∈ NFR implies s→∗
S t

due to Lemma 1 (instantiated with P2) and symmetry. From s→∗ϵ∗
R t we obtain sσc →∗

R tσd,
as the involved root step allows independent substitutions on the left and right-hand sides.
Moreover, tσd ∈ NFR, since d does not occur in R. From ground normalization equivalence we
obtain sσc →∗

S tσd. Finally, Lemma 2 allows the removal of the substitutions, resulting in the
desired rewrite sequence s→∗

S t.

Contrary to Theorem 4 one fresh constant is not sufficient as shown in the following example.

Example 6. Consider the two linear variable-separated TRSs

R : a→ b f(f(x, y), z)→ f(b, b) f(b, x)→ f(b, b)

f(x, a)→ f(z, b)

S : a→ b f(f(x, y), z)→ f(b, b) f(b, x)→ f(b, b)

f(b, a)→ f(z, b) f(f(x, y), a)→ f(z, b)
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They are not normalization equivalent since f(x, a)→!
R f(z, b) and f(x, a) ̸→∗

S f(z, b). The TRSs
are however ground normalization equivalent over the signature F ⊎ {c}. First observe that the
only ground normal forms reachable via a rewrite sequence involving a root step are b and f(c, b).
The normal form b is reached (using a root step) only from a, in both R and S. The normal
form f(c, b) can be reached from all ground terms of the shape f(t, a). For R this is obvious and
for S this can be seen by a case analysis on the root symbol of t. Adding a second constant d
allows one to mimick the original counterexample since f(c, a)→!

R f(d, b) and f(c, a) ̸→∗
S f(d, b).

For left-linear right-ground TRSs, a single fresh constant is enough to reduce normalization
equivalence to ground normalization equivalence.

Theorem 7. Left-linear right-ground TRSs R and S over a common signature F are normal-
ization equivalent if and only if R and S are ground normalization equivalent over F ⊎ {c}.

Proof. We mention the differences with the proof of Theorem 5. For the identity of NFR and
NFS for arbitrary terms, a single constant suffices. If s→∗ϵ∗

R t then t is ground. Hence sσc →∗
R t

and thus sσc →∗
S t by ground normalization equivalence. Lemma 2 gives s→∗

S t.

Each additional constant increases the execution time of FORT-h significantly. Hence results
that reduce the required number are of obvious interest. For example, ground TRSs need no
additional constants for the properties described in this paper. In the remainder of this section we
present results for TRSs over monadic signatures, which are signatures that consist of constants
and unary function symbols. In [6, Lemma 6] it is shown that for left-linear right-ground TRSs
and properties related to confluence, no additional constants are needed. The same holds for
commutation, which is a new (and formalized) result.

Theorem 8. Right-ground TRSs R and S over a common monadic signature F commute if
and only if R and S ground commute.

Proof. The only-if direction trivially holds. For the if direction we assume that R and S
ground commute. Consider s →∗

R t and s →∗
S u for s, t, u ∈ T (F ,V). If s = t or s = u, then

t →∗
S · →∗

R u obviously holds. So suppose s →+
R t and s →+

S u. Since F is monadic and R
and S are right-ground, we infer that t and u are ground terms. Let r ∈ T (F) be an arbitrary
ground term and let σr be the substitution which replaces all variables in Var(s) by r. Since
tσr = t, uσr = u and →+ is closed under substitution, we obtain sσr →+

R t and sσr →+
S u.

Ground commutation yields the desired joining sequence t→∗
S · →∗

R u.

Note that Theorem 8 cannot be extended to linear variable-separated TRSs which require
two constants even for monadic signatures, as seen by the TRS {a→ x}. It does not commute
with itself, since a→ x and a→ y, but it ground commutes with itself over the signatures {a}
and {a, c}.

Unlike commutation, the properties NE and CE require additional constants for TRSs over
monadic signatures even for left-linear right-ground systems, as can be seen from Example 3.
Nevertheless, we can reduce the number of constants to one if the signature is monadic, even
if the restriction to left-linear right-ground TRSs is dropped. A key observation is that in
non-empty rewrite sequences in a linear variable-separated TRS over a monadic signature fresh
constants can be replaced by arbitrary terms.

Lemma 9. Let R be a variable-separated TRS over a monadic signature F that contains a
constant c which does not appear in R. If s →+

R t and p ∈ Pos(s) such that s|p = c then
s[u]p →+

R t using the same rewrite rules at the same positions, for all terms u.
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Table 1: Additional constants required to reduce a property P to ground P .

property left-linear right-ground TRSs linear variable-separated TRSs

CE 1 (1) 1 (1) (Theorem 4)
NE 1 (1) 2 (1) (Theorems 5, 7, 10)

COM 1† (0) 2† (2) (Theorem 8)
CR 1*† (0)* 2† (2)

SCR 1* (0)* 2 (2)
WCR 1* (0)* 2 (2)
UNR 1*† (0)* 2† (2)
UNC 2*† (0)* 2† (2)
NFP 1* (0)* 2 (2)

As variable-separated TRSs are closed under inverse we can immediately deduce that rewrite
sequences of the shape sσc →+

R tσc imply s→+
R t for monadic systems. With this we are ready

to prove our claim.

Theorem 10. Variable-separated TRSs R and S over a common monadic signature F are
normalization equivalent if and only if R and S are ground normalization equivalent over F⊎{c}.

Proof. Note that TRSs over a monadic signature are necessarily linear. We mention the
differences with the proof of Theorem 5. A single constant suffices to prove NFR = NFS .
Consider a rewrite sequence s →∗ϵ∗

R t with t ∈ NFR. Ground normalization equivalence and
substitution closure yields sσc →!

S tσc. Furthermore, since the sequence s→∗ϵ∗
R t is non-empty

by definition, sσc /∈ NFR = NFS and thus sσc ̸= tσc as tσc ∈ NFS . Hence sσc →+
S tσc. Applying

Lemma 9 twice allows us to replace all occurrences of c in sσc and tσc by the corresponding
variables, resulting in s→∗

S t.

In Table 1 we summarize the results of this paper as well as the related results (the final
six rows) from [2]. The numbers for TRSs over monadic signatures are given in parentheses.
The underlined numbers are new results. The results marked with an asterisk are proved in [5],
those marked with a dagger are formalized in [2].

4 Conclusion

In this paper we presented new signature extension results allowing us to reduce the problem of
proving CE and NE to GCE and GNE respectively for linear variable-separated TRSs (Theorems 4
and 5). This is done by adding fresh constants to the signature. We also showed that the number
of required fresh constants for reducing NE to GNE can be reduced for left-linear right-ground
TRSs as well as for monadic systems (Theorem 10). The latter was also shown for the property
COM (Theorem 8). All results are formalized in Isabelle/HOL [1] and implemented in the tools
FORT-h, FORT-s, and the certifier FORTify. Binaries of the tools can be obtained from

https://fortissimo.uibk.ac.at/fort(ify)/

The implemented results enable FORT-s to find an equivalent complete TRS of our leading
example using the formula
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"[0](WCR & SN) & {+1} forall s, t ([0] s <->* t <=> [1] s <->* t)"

The {+1} instructs the decision procedure to add one fresh constant to the signature when
evaluating the subformula for CE. Calling FORT-s with this formula on our leading example R
produces the TRS:

a→ b f(b)→ g(a, a) g(a, x)→ a

which is indeed complete and equivalent to R on all terms (not just ground terms). For ease
of use we also added the shorthands CE and NE to the formula language. When using these
the tools FORT-h, FORT-s and FORTify add the appropriate amount of constants for any given
input TRS.
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Abstract

This paper describes the proof framework used in CONFident, a framework to deal with
different types of systems (term rewriting systems, context-sensitive term rewriting systems
and conditional term rewriting systems) and different types of tasks (checking joinability
of critical pairs, termination of systems, feasibility of reachibility problems or deducibil-
ity) and different techniques for proving confluence (including modular decompositions,
transformations, etc.).

1 Introduction

CONFident is a tool for automatically proving confluence of Term Rewriting Systems (TRSs),
Context-Sensitive Term Rewriting Systems (CS-TRSs), and Conditional Term Rewriting Sys-
tems (CTRSs) based on a unified framework that combines different processors that can use
external calls to prove or disprove confluence of a target system. In general, because of the
undecidability of confluence, it is quite difficult to find a proof of confluence based on the appli-
cation of one technique only. On the contrary, a proof of confluence usually involves different
phases where the input system is simplified, decomposed, analyzed to extract good properties
(linearity, orthogonality,. . . ), transformed into a (hopefully) simpler system or into a critical
pair joinability problem.

For this purpose, we have developed a Confluence Framework, inspired by the Dependency
Pair Framework, originally developed for proving (innermost) termination of TRSs [3, 4]. In
the Confluence Framework, confluence is treated as a confluence problem which is transformed,
decomposed, simplified, etc., into a set of problems by using the so-called processors. Besides
confluence problems, we also handle joinability problems which are produced by some processors
acting on confluence problem, and are also treated by appropriate processors. Processors can
then be applied again and again on the obtained problems. They often require calls to external
tools to solve proof obligations like termination, feasibility, theorem proving, etc. The obtained
proof is depicted as a proof tree from which confluence of the targetted rewrite system can be
proved or disproved. Of course, due to undecidability of confluence such a proof tree may fail
to be completed in some cases.

In the following, we describe how we manage to combine all those different tasks into a
unified framework.

∗Partially supported by grant RTI2018-094403-B-C32 funded by MCIN/AEI/10.13039/501100011033 and by
“ERDF A way of making Europe”, and PROMETEO/2019/098.
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2 Confluence Framework

In the confluence framework we describe two types of problems that appear naturally in proofs
of confluence: confluence problems, that allow us to encapsulates the different variants of input
rewrite systems (in our case, TRSs, CS-TRSs or CTRSs); and the joinability problems, which
describe a joinability problem generated by a (conditional) critical pair.

A replacement map µ is a mapping from function symbols f ∈ R to set of positions µ(f) ⊆
{1, . . . , k} (k is the arity of f) indicating the active arguments where reductions are allowed [8].
We use ↪→ to define the rewriting relation induced by R and µ.

Definition 1 (Confluence Problems). We consider two different types of problems:

• Let R be a CTRS (TRSs are included). A confluence problem, denoted CR(R), is positive
if R is confluent; otherwise it is negative.

• Let R be a TRS and µ be a replacement map. A µ-confluence problem, denoted CR(R, µ),
is positive if R is µ-confluent (confluent using ↪→); otherwise it is negative.

A conditional pair is π = 〈u, v〉 ⇐ c where c is a condition that contains a possibly empty
sequence of atomic conditions of the form s →∗ t, s ↓ t, s ↔∗ t, and also one-step µ-rewriting
problems s ↪→ t. If c is empty we just write 〈u, v〉. We say that π is joinable if for all
substitutions σ such that σ(c) holds.

Definition 2 (Joinability Problems). We consider two different types of problems:

• Let R be a CTRS and π be a conditional pair where the conditional part has no occurrence
of ↪→. A joinability problem, denoted JO(R, π), is positive if π is joinable in R; otherwise
it is negative.

• Let R be a TRS, µ be a replacement map, and π be a conditional pair where the conditional
part contains at most an occurrence of ↪→. A µ-joinability problem, denoted JO(R, µ, π),
is positive if π is µ-joinable in R; otherwise it is negative.

A processor P accepts a problem τ and returns a set P(τ) of (possibly heterogeneous)
problems τ1, . . . , τn. Those problems can be recasted as proofs (or refutations) of other problems.
The resulting problems are, hopefully, easier to prove.

Definition 3. A processor P is a partial function from problems into sets of problems; alter-
natively it can return “no”. The domain of P (i.e., the set of problems for which P returns) is
denoted Dom(P). We say that P is

• sound if for all τ ∈ Dom(P), τ is positive whenever P(τ) 6= “no” and all τ ′ ∈ P(τ) are
positive.

• complete if for all τ ∈ Dom(P), τ is negative whenever P(τ) = “no” or τ ′ is negative for
some τ ′ ∈ P(τ).

Confluence problems can be proved positive or negative in the usual way by using a proof
tree generated by the application of different processors.

2.1 List of processors

CONFident implements several processors. In this section, we give a short description and
appropriate reference to them.
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Simplification (PSimp). Before attempting a proof of confluence of a system R, some sim-
plifications are often possible: (1) Removing or transforming rules (CS-TRSs, and CTRSs) of
the form t→ t or t→ t⇐ c for some term t, (2) Removing infeasible rules (CTRSs only) using
infChecker [6], and (3) Inlining conditional rules (CTRSs only) as explained in [14, Def. 4].

PSimp(CR(R)) = {CR(R′)}

Modular decomposition (PMD). For TRSs R, processor PMD tries to find a decomposition
of R into two TRSs R1 and R2 if some of the modularity conditions for confluence is achieved:
(1) disjoint TRSs [16]; or (2) constructor-sharing and left-linear TRSs [13]; or (3) constructor-
sharing and layer-preserving TRSs [11].

PMD(CR(R)) = {CR(R1),CR(R2)}

Orthogonality (PHL). Processor PHL implements: (1) for TRSs R, Huet-Levy’s Theorem
(weakly orthogonal TRSs are confluent, see [12, Sect. 4.3]); (2) for CS-TRSs (R, µ), the result
in [9, Coro. 36] (left-orthogonal CS-TRSs with no extended µ-critical pairs are confluent1)
[9, Def. 29]; (3) for 3-CTRSs2 the result in [12, Theorem 7.4.14]3 (level-confluence implies
confluence); and also (4) the result in [12, Theorem 7.4.11] (orthogonal, properly oriented and
right-stable CTRSs are confluent).

PHL(CR(R)) = ∅ PHL(CR(R, µ)) = ∅

Extended Huet processor (PHuet). PHuet checks, (1) for CTRSs, joinability of (condi-
tional) critical pairs π1, . . . , πn, using [12, Def. 7.1.8]; (2) for CS-TRSs (R, µ), joinability of
extended µ-critical pairs π1, . . . , πn. For both uses,PHuet is not sound (joinability of critical
pairs, alone, does not imply confluence), although it is complete ([12, Lemma 4.2.3] for TRSs
and [9, Theorem 30] for CS-TRSs).

PHuet(CR(R)) = {JO(R, π1), . . . , JO(R, πn)} PHuet(CR(R, µ)) = {JO(R, µ, π1), . . . , JO(R, µ, πn)}

Extended Huet-Newman processor (PHN ). Relying on termination and µ-termination,
PHN applies (1) for TRSs R with critical pairs π1, . . . , πn if R is terminating [1, Corollary 6.2.6];
(2) For CS-TRSs (R, µ), with extended µ-critical pairs π1, . . . , πn if R is µ-terminating [9,
Theorem 32]; or (3) For normal CTRSs4, iff R is left-linear, terminating, and π1, . . . , πn are
joinable overlays [2, Def. 8]

PHN (CR(R)) = {JO(R, π1), . . . , JO(R, πn)} PHN (CR(R, µ)) = {JO(R, µ, π1), . . . , JO(R, µ, πn))}

Confluence as canonical joinability of µ-critical pairs (PCanJ). By relying on [5, Thm.
2], we can use a context-sensitive transformations to try to prove confluence of a TRS. In this
case, if R is a left-linear and level-decreasing TRS [5, Def. 1 & 2] (see also [8, Sect. 8.5]),
µ = µcanR

5, π1, . . . , πn are the µ-critical pairs of R [8, Def. 8.5], and R is µ-terminating.

PCanJ(CR(R)) = {JO(R, µ, π1), . . . , JO(R, µ, πn)}
1Such CS-TRSs are called µ-orthogonal [9, Def. 35].
2CTRSs of type 3 (usually called 3-CTRSs) are those whose rules `→ r ⇐ c satisfy that variables occurring

in r occur in ` or c [10].
3Originally in [15, Theorem 4.6]
4A CTRS is normal if for all rules `→ r ⇐ c and conditions s ≈ t in c, term t is an irreducible ground term

[2, Def. 2].
5The canonical replacement map µcanR for a TRS R is the most restrictive replacement map ensuring that

the non-variable subterms of the left-hand sides of the rules of R are all active [8, Section 5]
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Confluence as canonical µ-confluence (PCanCR). By relying on [8, Coro. 8.23], if R is
left-linear and normalizing TRS (i.e., every term has a normal form), and µ = µcanR , we can
also obtain a sound but not complete transformation.

PCanCR(CR(R)) = {CR(R, µ)}

Confluence of CTRS as confluence of TRSs (PU). Processor PU transforms a confluence
problem for a deterministic and terminating 3-CTRS R into a confluence problem for a TRS
U(R), where U is the transformation from [12, Def. 7.2.33] 3-CTRSs to TRSs described in [12,
Def. 7.2.48]. This processor is sound but not complete.

PU (CR(R)) = {CR(U(R))}

Joinability processor (PJO). PJO implements methods for proving and disproving joinabil-
ity of conditional pairs are described in [7, Section 6].

PJO(JO(R, π)) =

{
∅ if π is joinable w.r.t. R
no if π is not joinable w.r.t. R

PJO(JO(R, µ, π)) =

{
∅ if π is µ-joinable w.r.t. R
no if π is not µ-joinable w.r.t. R

2.2 Strategy

Given a rewrite system R, the processors enumerated in Section 2.1 are used to build a proof
tree with root CR(R) or CR(R, µ) to hopefully conclude (µ-)confluence or non-(µ-)confluence
of R. In our proof strategy, we use two strategy combinators, the sequential combinator and
the alternative combinator. The strategies used in an alternative combinator can be executed
in parallel. The proof strategy used in CONFident experimentation is as follows: (i) it tries to
apply PSimp to simplify the input system or its rules; then (ii) it tries to decompose the problem
applying PMD ; (iii) at this point, there is a triple alternative with the identity processors (that
returns the same input system), PCanCR and PU ; (iv) for each branch, there is an alternative
of PHL, PHN , PHuet and PCanCR; and (v) it tries PJO on each joinability problem. Returning
“yes”, “no” or “maybe” depends on the result of the evaluation of the resulting proof tree.

2.3 Application interface and experimental results

CONFident is written in Haskell and it has more than 80 Haskell files with more than 9000 lines
of pure code (blanks and comments not included). The tool is accessible online through its web
interface in http://zenon.dsic.upv.es/confident/.

CONFident participated in the 2021 International Confluence Competition (CoCo)6 in the
categories TRS, SRS, and CTRS, obtaining the first place in the CTRS category. With respect
to context-sensitive rewriting, a subcategory of confluence of CSR will be part of CoCo 2022
(see http://project-coco.uibk.ac.at/2022/).

6http://project-coco.uibk.ac.at/2021/
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2.4 Conclusions

CONFident is a tool which is able to automatically prove and disprove confluence of variants
of rewrite systems: TRSs, CS-TRSs, and Join, Oriented, and Semi-Equational CTRSs. The
proofs are obtained by combining different techniques in what we call Confluence Framework,
where confluence and joinability problems are handled (simplified, transformed, etc.) by means
of processors, which can be freely combined to obtain the proofs which are displayed as a proof
tree. To the best of our knowledge, CONFident is the only tool which is able to prove and
disprove confluence of Join and Semi-Equational CTRSs, and the only tool which is able to
prove and disprove confluence of CS-TRSs. CONFident has proved to be a powerful tool for
proving confluence of CTRSs. This is witnessed by the first position obtained in the CTRS
subcategory of CoCo 2021.
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Form. In M. Bojańczy and C. Chekuri, editors, 41st IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS 2021), volume 213 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 44:1–44:18, Dagstuhl, Germany, 2021.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[8] Salvador Lucas. Context-sensitive Rewriting. ACM Comput. Surv., 53(4):78:1–78:36, 2020.
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Confluence Competition 2022

Rául Gutiérrez1, Aart Middeldorp2, Naoki Nishida3, and Kiraku Shintani4

1 Universidad Politécnica de Madrid, Madrid, Spain
2 Department of Computer Science, University of Innsbruck, Austria

3 Department of Computing and Software Systems, Nagoya University, Japan
4 School of Information Science, JAIST, Japan

The next few pages in these proceedings contain the descriptions of the tools participating in
the 11th Confluence Competition (CoCo 2022). CoCo is a yearly competition in which software
tools attempt to automatically (dis)prove confluence and related properties of rewrite systems
in a variety of formats. For a detailed description we refer to [1]. This year there were 13 tools
(listed in order of registration) participating in 11 categories (listed in order of first appearance
in CoCo):

TRS CPF-TRS CTRS GCR UNR UNC NFP COM INF SRS CSR

CSI ✓ ✓ ✓ ✓ ✓ ✓
FORT-h ✓ ✓ ✓ ✓ ✓ ✓
FORTify ✓ ✓ ✓ ✓ ✓ ✓
CONFident ✓ ✓ ✓ ✓
infChecker ✓
Toma ✓
Hakusan ✓ ✓
CoLL ✓
CeTA ✓
CO3 ✓ ✓
ACP ✓ ✓ ✓ ✓ ✓ ✓
AGCP ✓
NaTT ✓

The winning (for combined YES/NO answers) tools1 of CoCo 2021 participated as demonstration
tools, to provide a benchmark to measure progress. The live run of CoCo 2022 on StarExec [2]
can be viewed at http://cocograph.uibk.ac.at/2022.html. Further information about CoCo
2022, including a description of the categories and detailed results, can be obtained from

http://project-coco.uibk.ac.at/2022/

Acknowledgements The CoCo steering committee is grateful to Nao Hirokawa and Fabian
Mitterwallner for their support.
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CoCo 2022 Participant: CSI 1.2.6

Fabian Mitterwallner and Aart Middeldorp

Department of Computer Science, University of Innsbruck, Austria
fabian.mitterwallner@uibk.ac.at, aart.middeldorp@uibk.ac.at

CSI is an automatic tool for (dis)proving confluence and related properties of first-order term
rewrite systems (TRSs). It has been in development since 2010. Its name is derived from the
Confluence of the rivers Sill and Inn in Innsbruck. The tool is available from

http://cl-informatik.uibk.ac.at/software/csi

under a LGPLv3 license. A detailed description of CSI can be found in [5]. Some of the
implemented techniques are described in [1,4,7]. CSI can also produce certificates for confluence
results, which are checked by CeTA. Compared to last year’s version, CSI 1.2.6 can now produce
certificates containing proofs based on development-closed critical pairs, which is a sufficient
condition for confluence of left-linear TRSs [6]. These can be checked by the latest version of
CeTA [3], due to the formalization and certification efforts by Christina Kohl, parts of which are
described in [2].

CSI participates in the following CoCo 2022 categories: CPF-TRS, NFP, SRS, TRS, UNC,
and UNR.
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CoCo 2022 Participant: FORT-h 2.0∗

Fabian Mitterwallner and Aart Middeldorp

Department of Computer Science, University of Innsbruck, Austria
fabian.mitterwallner@uibk.ac.at, aart.middeldorp@uibk.ac.at

The first-order theory of rewriting is a decidable theory for finite left-linear right-ground
rewrite systems. The decision procedure goes back to Dauchet and Tison [1]. FORT-h implements
a new variant, described in [2], of the decision procedure for the larger class of linear variable-
separated rewrite systems. This variant supports a more expressive theory and is based on
anchored ground tree transducers. More importantly, it can produce certificates for the YES/NO
answers. These certificates can then be verified by FORTify, an independent Haskell program
that is code-generated from the formalization of the decision procedure in the proof assistent
Isabelle/HOL.

Compared to last year’s version, FORT-h 2.0 makes use of improved signature extension
results for proving properties on non-ground terms [5]. More specifically, FORT-h is now able
add fewer fresh constants to the signature depending on certain syntactic properties of the
input systems. This shrinks the size of the constructed automata leading to significantly faster
execution times in some cases. A command-line version of FORT-h 2.0 can be downloaded from

http://fortissimo.uibk.ac.at/fort(ify)/

FORT-h participates in the following CoCo 2022 categories: COM, GCR, NFP, UNC, and UNR.
Together with FORTify [6], it participates in CPF-TRS in addition to the previously mentioned
ones to produce certified YES/NO answers.
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CoCo 2022 Participant: FORTify 2.0∗

Alexander Lochmann, Fabian Mitterwallner, and Aart Middeldorp

Department of Computer Science, University of Innsbruck, Austria

The first-order theory of rewriting is a decidable theory for linear variable-separated rewrite
systems. The decision procedure goes back to Dauchet and Tison [1]. In this theory confluence-
related properties on ground terms are easily expressible. An extension of the theory to
multiple rewrite systems, as well as the decision procedure, has recently been formalized [2,3] in
Isabelle/HOL. The code generation facilities of Isabelle then give rise to the certifier FORTify [4]
which checks certificate constructed by FORT-h [6]. FORTify takes as input an answer (YES/NO),
a formula, a list of TRSs, and a certificate proving that the formula holds (does not hold) for
the given TRSs. It then checks the integrity and validity of the certificate. A command-line
version of the tool can be downloaded from

https://fortissimo.uibk.ac.at/fort(ify)/

Compared to last year, the formalization on which FORTify is based contains more and
improved signature extension results, as described in [5]. Importantly for this competition, it
contains new results related to the normal form property making it possible for FORTify to
compete in the NFP category. Furthermore, it adds fewer constants for ground rewrite systems
and for rewrite systems contain only unary function symbols and constants (monadic systems).
This leads to smaller automata in the procedure and in turn to shorter run times in some cases.
Other performance improvements are also included.

This year FORTify participates, together with FORT-h, in the following CoCo 2022 categories:
CPF-TRS, COM, GCR, NFP, UNC, and UNR.
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infChecker at the 2022 Confluence Competition∗

Raúl Gutiérrez1, Salvador Lucas2, and Miguel Vı́tores2

1 Universidad Politécnica de Madrid, Madrid, Spain
r.gutierrez@upm.es

2 VRAIN, Universitat Politècnica de València, Valencia, Spain
slucas@dsic.upv.es

mvitvic@posgrado.upv.es

1 Overview

infChecker is a tool for checking (in)feasibility of goals G = {Fi}mi=1 where Fi = (sij ▷◁ij
tij)

ni
i=1 and ▷◁ij∈ {→,→∗,→+, ↪→, ↪→∗, ↪→+,�,�, ↓,

↪→

,↔,←↩↪→,↔∗,←↩↪→∗} where predicates ▷◁ij
represent binary relations on terms (most of them well-known or easy generalizations of well-
known relations) defined by provability of goals s ▷◁ij t with respect to a first-order theories
Th▷◁ij [1, 3].

The tool is available here:

http://zenon.dsic.upv.es/infChecker/.

In 2022, we participate using the version presented at the 2021 Confluence Competition. A
short description of the tool can be seen in [2].

infChecker participated from 2019 until today in the confluence competition (CoCo) in the
INF category. Currently, infChecker is the most powerful tool for proving and disproving infea-
sibility.
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Toma 0.2: An Equational Theorem Prover

Teppei Saito and Nao Hirokawa

JAIST, Japan

Toma is an automatic theorem prover for first-order equational systems, freely available at:

https://www.jaist.ac.jp/project/maxcomp/

The typical usage is: toma --inf <file>, where <file> is an infeasibility problem in the CoCo
format [5]. The tool outputs YES if infeasibility of the problem is shown, and MAYBE otherwise.
It also accepts the TPTP CNF format [6].

Toma proves infeasibility as follows: By using the split-if encoding [2] a given infeasibility
problem is transformed into a word problem of form E ⊢ T ̸≈ F whose validity entails infeasibility
of the original problem. The word problem is solved by a new variant of maximal (ordered)
completion [7, 3]:

1. Given an equational system E1, we construct a lexicographic path order ≻lpo that maxi-
mizes reducibility of the ordered rewrite system (E1,≻lpo) [7].

2. Using the order, we run ordered completion [1] on E1. Here we do not employ the deduce
rule (critical pair generation). Such a run eventually ends with an inter-reduced version
(E2,≻lpo) of (E1,≻lpo).

3. The tool checks ground-completeness of the ordered rewrite system (E2,≻lpo) by Martin
and Nipkow’s method [4].

(a) If (E2,≻lpo) is ground-complete but T and F are not joinable, the tool outputs YES
and terminates.

(b) If T and F are joinable in (E2,≻lpo), the tool outputs MAYBE and terminates.

(c) Otherwise, there exists at least one equation that is valid in E2 but not ground-
joinable in (E2,≻lpo). Let E3 be a set of such equations. Setting E1 := E2 ∪ E3, the
tool goes back to the first step.
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Hakusan 0.5: A Confluence Tool

Kiraku Shintani and Nao Hirokawa

JAIST, Japan
s1820017@jaist.ac.jp, hirokawa@jaist.ac.jp

Hakusan is a prototype tool for automatically proving confluence of left-linear term rewrite
systems (TRSs). The tool, written in Haskell, is freely available at:

http://www.jaist.ac.jp/project/saigawa/

The typical usage is: hakusan <file>. Here the input file is written in the TRS format [3].
The tool outputs YES if confluence of the input TRS is proved, and MAYBE if the tool does not
reach any conclusion. Currently the tool does not support non-confluence analysis.

Confluence analysis in Hakusan is based on compositional confluence criteria [4], which mean
sufficient conditions such that, given a rewrite system R and its subsystem C ⊆ R, confluence of
C implies that of R. Compositional criteria can be seen as a combination method for confluence
analysis. Hakusan alternately uses two compositional confluence criteria: One is a compositional
version of the rule labeling method [6, Theorem 56], and the other is a compositional version
of the confluence criterion by critical pair systems [1].

Theorem 1. Let R be a left-linear TRS and C a confluent TRS with C ⊆ R, and also let ϕ
and ψ be labeling functions from R to N. The TRS R is confluent if we have Rϕ,0 = C = Rψ,0
and the following conditions hold for all (k,m) ∈ N2 \ {(0, 0)}.

• Every parallel critical peak of form t ϕ,k←−7 [− s ϵ−→ψ,m u is (ψ, ϕ)-decreasing.

• Every parallel critical peak of form t ψ,m←−7 [− s ϵ−→ϕ,k u is (ϕ, ψ)-decreasing.

Here Rϕ,k stands for {ℓ→ r ∈ R | ϕ(ℓ→ r) ⩽ k} and −−7 [→ϕ,k for the parallel step of Rϕ,k. See
[4, Definition 27] for the definition of (ψ, ϕ)-decreasingness.

Theorem 2. Let R be a left-linear TRS and C a confluent TRS with C ⊆ R. The TRS R
is confluent if R←−7 [−⋊ ϵ−→R ⊆ →∗

R · ∗
R← and P/R is terminating. Here P stands for the TRS:

{s→ t, s→ u | t R←−7 [− s ϵ−→R u is a parallel critical peak but not t←→∗
C u}.

For automation, the tool employs the SMT solver Z3 [2] for finding suitable labeling func-
tions, and the termination tool NaTT [5] for testing relative termination.
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CoLL 1.6.1: A Commutation Tool

Kiraku Shintani

JAIST, Japan
s1820017@jaist.ac.jp

CoLL (version 1.6.1) is a tool for automatically proving commutation of left-linear term
rewrite systems (TRSs). The tool, written in OCaml, is freely available at:

http://www.jaist.ac.jp/project/saigawa/coll/

The typical usage is: coll <file>. Here the input file is written in the commutation problem
format [4]. The tool outputs YES if commutation of the input TRSs is proved, NO if non-
commutation is shown, and MAYBE if the tool does not reach any conclusion.

In this tool commutation of left-linear TRSs is shown by Hindley’s Commutation Theorem:

Theorem 1 ([2, 7]). ARSs A = ⟨A, {→α}α∈I⟩ and B = ⟨A, {→β}β∈J⟩ commute if →α and
→β commute for all α ∈ I and β ∈ J .

Here indexes are interpreted as subsystems of the input TRSs. For every pair of subsystems the
tool proves the commutation property, employing the three criteria: simultaneous closedness [5],
parallel closedness [9], parallel upside closedness and outside closedness [6], rule labeling with
weight function [10, 1], and Church-Rosser modulo A/C [3]. A detailed description of CoLL can
be found in [8].
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CoCo 2022 Participant: CeTA 2.42

Christina Kohl, René Thiemann, and Aart Middeldorp

Department of Computer Science, University of Innsbruck, Austria

The tool CeTA [4] is a certifier for, among other properties, (non-)confluence of term rewrite
systems with and without conditions. Its soundness is proven as part of the formal proof library
IsaFoR, the Isabelle Formalization of Rewriting. For a complete reference of supported techniques
we refer to the certification problem format (CPF) and the IsaFoR/CeTA website:

http://cl-informatik.uibk.ac.at/isafor/

In the following, we describe what is new in version 2.42 of CeTA.

The most important extension with respect to CoCo is the ability to check confluence of
left-linear TRSs via van Oostrom’s development closedness criterion [5]. It is trivial to use this
criterion in a certificate, since the application conditions are checked automatically without
requiring further information on the joins. Some important steps of the formalization effort are
described in [1]. Note that, although every parallel closed TRS is also development closed, this
latter method in CeTA 2.42 does not (yet) completely subsume the parallel closedness criterion
that was added in version 2.25 [3]. The reason is that the formalization of parallel closedness
allows a weakened joining condition for overlays—an extension known as almost parallel closed.
As shown in [5] the same extension can be applied to the development closedness criterion but
its formalization in IsaFoR is currently still work in progress.

Finally the efficiency of the parser inside CeTA has been improved for version 2.42 by providing
a custom encoding of characters. More details on this can be found in [2].
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CO3, a converter for proving confluence of conditional TRSs,1 tries to prove confluence
of conditional term rewrite systems (CTRSs, for short) by using a transformational approach
(cf. [7]). The tool first transforms a given weakly-left-linear (WLL, for short) 3-DCTRS into
an unconditional term rewrite system (TRS, for short) by using Uconf [3], a variant of the
unraveling U [9], and then verifies confluence of the transformed TRS by using the following
theorem: A 3-DCTRS R is confluent if R is WLL and Uconf (R) is confluent [2, 3]. The tool
is very efficient because of very simple and lightweight functions to verify properties such as
confluence and termination of TRSs.

Since version 2.0, a narrowing-tree-based approach [8, 4] to prove infeasibility of a condition
w.r.t. a CTRS has been implemented [5]. The approach is applicable to syntactically deter-
ministic CTRSs that are operationally terminating and ultra-right-linear w.r.t. the optimized
unraveling. To prove infeasibility of a condition c, the tool first prove confluence, and then
linearizes c if failed to prove confluence; then, the tool computes and simplifies a narrowing tree
for c, and examines the emptiness of the narrowing tree.

The current version accepts both join and semi-equational CTRSs, and transforms them
into equivalent DCTRSs to prove confluence or infeasibility [6].

This version has two improvements compared with the previous one [6]. One is the removal
of valid conditions: For a conditional rule ℓ→ r ⇐ s1 ↠ t1, . . . , sk ↠ tk ∈ R, a valid conditions
si ↠ ti such that either si is a variable appearing once in the rule or si → ti is in R as an
unconditional rule is removed from the conditional part. The other is the computation of
approximated edges for estimated dependency graphs: For dependency pairs s→ t, u→ v of a
TRS R, if t is ground and REN (CAP(t)) is not unifiable with u, then we check whether there
exists a reduct t′ of t such that REN (CAP(t′)) is unifiable with u (cf. a narrowing processor [1]).

References

[1] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and improving dependency
pairs. J. Autom. Reason., 37(3):155–203, 2006.

[2] K. Gmeiner, B. Gramlich, and F. Schernhammer. On soundness conditions for unraveling deter-
ministic conditional rewrite systems. In Proc. RTA 2012, vol. 15 of LIPIcs, pp. 193–208, 2012.

[3] K. Gmeiner, N. Nishida, and B. Gramlich. Proving confluence of conditional term rewriting systems
via unravelings. In Proc. IWC 2013, pp. 35–39, 2013.

[4] Y. Maeda, N. Nishida, M. Sakai, and T. Kobayashi. Extending narrowing trees to basic narrowing
in term rewriting. IEICE Tech. Rep. SS2018-39, Vol. 118, No. 385, pp. 73–78, 2019, in Japanese.

[5] N. Nishida. CO3 (Version 2.1). In Proc. IWC 2020, page 67, 2020.

[6] N. Nishida. CO3 (Version 2.2). In Proc. IWC 2021, page 61, 2021.

[7] N. Nishida, T. Kuroda, and K. Gmeiner. CO3 (Version 1.3). In Proc. IWC 2016, p. 74, 2016.

[8] N. Nishida and Y. Maeda. Narrowing trees for syntactically deterministic conditional term rewriting
systems. In Proc. FSCD 2018, vol. 108 of LIPIcs, pp. 26:1–26:20, 2018.

[9] E. Ohlebusch. Termination of logic programs: Transformational methods revisited. Appl. Algebra
Eng. Commun. Comput., 12(1/2):73–116, 2001.

1http://www.trs.css.i.nagoya-u.ac.jp/co3/

63

http://www.trs.css.i.nagoya-u.ac.jp/co3/


ACP: System Description for CoCo 2022

Takahito Aoto

Institute of Science and Technology, Niigata University
aoto@ie.niigata-u.ac.jp

A primary functionality of ACP is proving confluence (CR) of term rewriting systems
(TRSs). ACP integrates multiple direct criteria for guaranteeing confluence of TRSs. It also
incorporates divide–and–conquer criteria by which confluence or non-confluence of TRSs can
be inferred from those of their components. Several methods for disproving confluence are also
employed. For some criteria, it supports generation of proofs in CPF format that can be cer-
tified by certifiers. The internal structure of the prover is kept simple and is mostly inherited
from the version 0.11a, which has been described in [3]. It also deal with confluence of oriented
conditional term rewriting systems. Besides confluence, ACP supports proving the UNC prop-
erty (unique normal form property w.r.t. conversion) and the commutation property of term
rewriting systems. The ingredients of the former property have been appeared in [2, 5]. Our
(dis)proofs of commutation are based on a development closed criterion [6] and a simple search
for counter examples. We are now working toward extending our confluence prover for CTRSs
[4]. No new criterion, however, has been incorporated from the one submitted for CoCo 2021.

ACP is written in Standard ML of New Jersey (SML/NJ) and the source code is also available
from [1]. It uses a SAT prover such asMiniSAT and an SMT prover YICES as external provers. It
internally contains an automated (relative) termination prover for TRSs but external (relative)
termination provers can be substituted optionally. Users can specify criteria to be used so that
each criterion or any combination of them can be tested. Several levels of verbosity are available
for the output so that users can investigate details of the employed approximations for each
criterion or can get only the final result of prover’s attempt.
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AGCP (Automated Groud Confluence Prover) [1] is a tool for proving ground confluence of
many-sorted term rewriting systems. AGCP is written in Standard ML of New Jersey (SML/NJ).
AGCP proves ground confluence of many-sorted term rewriting systems based on two ingredients.
One ingredient is to divide the ground confluence problem of a many-sorted term rewriting
system R into that of S ⊆ R and the inductive validity problem of equations u ≈ v w.r.t. S
for each u → r ∈ R \ S. Here, an equation u ≈ v is inductively valid w.r.t. S if all its ground

instances uσ ≈ vσ is valid w.r.t. S, i.e. uσ ∗↔S vσ. Another ingredient is to prove ground
confluence of a many-sorted term rewriting system via the bounded ground convertibility of
the critical pairs. Here, an equation u ≈ v is said to be bounded ground convertibile w.r.t. a
quasi-order ≿ if uθg

∗←→
≿ R vθg for any its ground instance uσg ≈ vσg, where x

∗←→
≿

y iff there

exists x = x0 ↔ · · · ↔ xn = y such that x ≿ xi or y ≿ xi for every xi.
Rewriting induction [3] is a well-known method for proving inductive validity of many-

sorted term rewriting systems. In [1], an extension of rewriting induction to prove bounded
ground convertibility of the equations has been reported. Namely, for a reduction quasi-order
≿ and a quasi-reducible many-sorted term rewriting system R such that R ⊆ ≻, the extension
proves bounded ground convertibility of the input equations w.r.t. ≿. The extension not only
allows to deal with non-orientable equations but also with many-sorted TRSs having non-free
constructors. Several methods that add wider flexibility to the this approach are given in
[2]: when suitable rules are not presented in the input system, additional rewrite rules are
constructed that supplement or replace existing rules in order to obtain a set of rules that
is adequate for applying rewriting induction; and an extension of the system of [2] is used if
if the input system contains non-orientable constructor rules. AGCP uses these extension of
the rewriting induction to prove not only inductive validity of equations but also the bounded
ground convertibility of the critical pairs. Finally, some methods to deal with disproving ground
confluence are added as reported in [2].

No new ground (non-)confluence criterion has been incorporated from the one submitted
for CoCo 2021.
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NaTT [3] is a termination prover for plain term rewriting, written in OCaml and the source
code is available at:

https://www.trs.cm.is.nagoya-u.ac.jp/NaTT/

Though NaTT is not a confluence prover, since the last year it is participating in the infeasibility
category of the Confluence Competition, as its quick reachability checker [1] can be used to
solve infeasibility problems.

In this year, NaTT solves infeasibility problems by generalizing its term ordering tech-
niques, the core of termination proving. The details of the technique will be presented at
IJCAR 2022 [2].

Since the last year, the input format of NaTT is a (relatively simple) XML, now described
at the above page. In the competition, it reads the COPS format by translating it into the
XML format, using the text-to-and-from-XML translator TXtruct, which was presented at
WPTE 2022. The format description in the above page is automatically generated by TXtruct.
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