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Abstract

We present a transformation from logically constrained term rewrite systems (LCTRSs)
to plain term rewrite systems (TRSs) such that critical pairs of the latter correspond to
constrained critical pairs of the former. This allows us to transfer confluence results for
TRSs based on critical pair conditions to LCTRSs.

1 Introduction
Numerous techniques exist to (dis)prove confluence of plain TRSs. For LCTRSs much less is
known. Kop and Nishida [1] established (weak) orthogonality as sufficient confluence criteria for
LCTRSs. Joinability of critical pairs for terminating systems is implicit in [4]. Very recently,
strong closedness for linear LCTRSs and (almost) parallel closedness for left-linear LCTRSs
were established [2]. The proofs of these results were obtained by replaying existing proofs for
TRSs in a constrained setting, involving a non-trivial effort. For more advanced confluence
criteria, this is not feasible.

In this paper we present a simple transformation from LCTRSs to TRSs which allows us
to relate results for the latter to the former. This transformation is presented in the next
section and used in Section 3 to prove that (almost) development closed left-linear LCTRSs are
confluent by reusing the corresponding result for TRSs obtained by van Oostrom [3].

We assume familiarity with the basic notions of term rewriting. In the remainder of this
introductory section we recall a few key notions for LCTRSs. For more background information
we refer to [1, 2, 4]. We assume a many-sorted signature F = Fte∪Fth. For every sort ι in Fth we
have a non-empty set Valι ⊆ Fth of value symbols, such that all c ∈ Valι are constants of sort ι.
We demand Fte∩Fth ⊆ Val where Val =

⋃
ι Valι. In the case of integers this results in an infinite

signature with Z ⊆ Val ⊆ Fth. A term in T (Fth,V) is called a logical term. Ground logical
terms are mapped to values by an interpretation J : [[f(t1, . . . , tn)]] = fJ ([[t1]], . . . , [[tn]]). Logical
terms of sort bool are called constraints. A constraint φ is valid if [[φγ]] = ⊤ for all substitutions
γ such that γ(x) ∈ Val for all x ∈ Var(φ). A constrained rewrite rule is a triple ℓ→ r [φ ] where
ℓ, r ∈ T (F ,V) are terms of the same sort such that root(ℓ) ∈ Fte \Fth and φ is a constraint. We
denote the set Var(φ) ∪ (Var(r) \ Var(ℓ)) of logical variables in ℓ → r [φ ] by LVar(ℓ → r [φ ]).
We write EVar(ℓ → r [φ ]) for the set Var(r) \ (Var(ℓ) ∪ Var(φ)). A set of constrained rewrite
rules is called an LCTRS. A substitution σ is said to respect a rule ℓ → r [φ ], denoted by
σ ⊨ ℓ → r [φ ], if Dom(σ) = Var(ℓ) ∪ Var(r) ∪ Var(φ), σ(x) ∈ Val for all x ∈ LVar(ℓ → r [φ ]),
and φσ is valid. Moreover, a constraint φ is respected by σ, denoted by σ ⊨ φ, if σ(x) ∈ Val
for all x ∈ Var(φ) and φσ is valid. We call f(x1, . . . , xn) → y [y = f(x1, . . . , xn)] with a fresh
variable y and f ∈ Fth \ Val a calculation rule. The set of all calculation rules induced by the
signature Fth of an LCTRS R is denoted by Rca and we abbreviate R∪Rca to Rrc. A rewrite
step s →R t satisfies s|p = ℓσ and t = s[rσ]p for some position p, constrained rewrite rule
ℓ→ r [φ ] in Rrc, and substitution σ such that σ ⊨ ℓ→ r [φ ].
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A constrained term is a pair s [φ ] consisting of a term s and a constraint φ. Two constrained
terms s [φ ] and t [ψ ] are equivalent, denoted by s [φ ] ∼ t [ψ ], if for every substitution γ
respecting φ there is some substitution δ respecting ψ such that sγ = tδ, and vice versa. Let
s [φ ] be a constrained term. If s|p = ℓσ for some constrained rewrite rule ρ : ℓ→ r [ψ ] ∈ Rrc,
position p, and substitution σ such that σ(x) ∈ Val∪Var(φ) for all x ∈ LVar(ρ), φ is satisfiable
and φ⇒ ψσ is valid then s [φ ]→R s[rσ]p [φ ]. The rewrite relation ∼→R on constrained terms
is defined as ∼ · →R · ∼ and s [φ ] ∼→p t [ψ ] indicates that the rewrite step in ∼→R takes place
at position p. Similarly, we write s [φ ] ∼→⩾p t [ψ ] if the position in the rewrite step is below
position p. Note that in our definition of →R the constraint is not modified. This is different
from [1, 2] where calculation steps s[f(v1, . . . , vn)]p [φ ]→ s[v]p [φ ∧ v = f(v1, . . . , vn)] modify
the constraint. Our relation ∼→ is equivalent to the relation ∼ · (→ru ∪ →ca) · ∼ in [1, 2] since
the constraint can be expanded as exemplified below.

Example 1. Consider the constrained term x+1 [x > 3 ]. Calculation steps as defined in [1, 2]
permit x + 1 [x > 3 ] → z [z = x + 1 ∧ x > 3 ]. In our setting, an initial equivalence step is
required to introduce the fresh variable z and the corresponding assignment needed to perform
a calculation: x+ 1 [x > 3 ] ∼ x+ 1 [z = x+ 1 ∧ x > 3 ]→ z [z = x+ 1 ∧ x > 3 ].

Our treatment allows for a much simpler definition of parallel and multi-step rewriting since
we do not have to merge different constraints.

2 Transformation

Our transformation is defined below.

Definition 2. Given an LCTRS R, the TRS R consists of the following rules: (1) ℓτ → rτ for
all ρ : ℓ→ r [φ ] ∈ R with τ ⊨ ρ and Dom(τ) = LVar(ρ), and (2) f(v1, . . . , vn)→ [[f(v1, . . . , vn)]]
for all f ∈ Fth \ Val and v1, . . . , vn ∈ Val.

Note that R typically consists of infinitely many rules.

Lemma 3. The rewrite relations of R and R are the same. Moreover p−→R =
p−→R for all

positions p.

Proof. We first show p−→R ⊆
p−→R. Assume s p−→R t. So either s = s[f(v1, . . . , vn)]p → s[v]p = t

for some f ∈ Fth\Val and v = [[f(v1, . . . , vn)]] or s = s[ℓσ]p → s[rσ]p = t for some ρ : ℓ→ r [φ ] ∈
R and σ ⊨ ρ. In the first case s p−→R t by the definition of R. In the second case we split σ into
two substitutions τ = {x 7→ σ(x) | x ∈ LVar(ρ)} and δ = {x 7→ σ(x) | x ∈ Var(ℓ) \ LVar(ρ)}.
From σ ⊨ ρ we infer τ ⊨ ρ and thus τ(x) ∈ Val for all x ∈ LVar(ρ). Hence σ = τ ∪ δ = τδ. We
have ℓτ → rτ ∈ R. Hence s = s[ℓτδ]p

p−→R s[rτδ]p = t as desired. To show the reverse inclusion
p−→R ⊆

p−→R we assume s p−→R t. When the applied rule stems from a calculation rule in R, we
trivially have s p−→R t. Otherwise s = s[ℓτδ]p

p−→R s[rτδ]p for some rule ρ : ℓ→ r [φ ] ∈ R with
τ ⊨ ρ. Let σ = τδ. Since τ(x) ∈ Val for all x ∈ LVar(ρ), we have xσ = xτ for all x ∈ LVar(ρ).
Hence σ ⊨ ρ and thus s = s[ℓσ]p

p−→R s[rσ]p = t.

Since →R and →R coincide, we drop the subscript in the sequel. Rules of type (2) in
Definition 2 can be viewed as type (1) for the rule f(x1, . . . , xn) → y [y = f(x1, . . . , xn)] in
Rca by taking τ = {x1 7→ v1, . . . , xn 7→ vn, y 7→ [[f(v1, . . . , vn)]]}. Hence we do not distinguish
between the two cases and consider only rules of type (1) with ρ ∈ Rrc.
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Definition 4. An overlap of an LCTRS R is a triple ⟨ρ1, p, ρ2⟩ with rules ρ1 : ℓ1 → r1 [φ1 ]
and ρ2 : ℓ2 → r2 [φ2 ], satisfying the following conditions: (1) ρ1 and ρ2 are variable-disjoint
variants of rewrite rules in Rrc, (2) p ∈ PosF (ℓ2), (3) ℓ1 and ℓ2|p unify with mgu σ such
that σ(x) ∈ Val ∪ V for all x ∈ LVar(ρ1) ∪ LVar(ρ2), (4) φ1σ ∧ φ2σ is satisfiable, and (5) if
p = ϵ then ρ1 and ρ2 are not variants, or Var(r1) ⊈ Var(ℓ1). In this case we call ℓ2σ[r1σ]p ≈
r2σ [φ1σ ∧ φ2σ ∧ ψσ ] a constrained critical pair obtained from the overlap ⟨ρ1, p, ρ2⟩. Here
ψ =

∧
{x = x | x ∈ EVar(ρ1) ∪ EVar(ρ2)}. The set of all constrained critical pairs of R is

denoted by CCP(R).

A key ingredient of our approach is to relate critical pairs of the transformed TRS to
constrained critical pairs of the originating LCTRS.

Theorem 5. For every critical pair s ≈ t of R there exists a constrained critical pair s′ ≈ t′ [φ′ ]
of R and a substitution γ such that s = s′γ, t = t′γ and γ ⊨ φ′.

Proof. Let s ≈ t be a critical pair ofR, originating from the critical peak ℓ2µσ[r1νσ]p ← ℓ2µσ =
ℓ2µσ[ℓ1νσ]p → r2µσ with variants ρ1 : ℓ1 → r1 [φ1 ] and ρ2 : ℓ2 → r2 [φ2 ] of rules in Rrc without
shared variables, Dom(ν) = LVar(ρ1), Dom(µ) = LVar(ρ2), ν ⊨ ρ1, µ ⊨ ρ2, p ∈ PosF (ℓ2µ),
and σ is an mgu of ℓ2µ|p and ℓ1ν. Moreover, if p = ϵ then ℓ1ν → r1ν and ℓ2µ → r2µ are not
variants. Define τ = ν ⊎ µ. Clearly, ℓ1τ = ℓ1ν, r1τ = r1ν, ℓ2τ = ℓ2µ, r2τ = r2µ, τ ⊨ ρ1 and
τ ⊨ ρ2. Hence the given peak can be written as ℓ2τσ[r1τσ]p ← ℓ2τσ = ℓ2τσ[ℓ1τσ]p → r2τσ and
τ ⊨ φ where φ = φ1 ∧ φ2 ∧

∧
{x = x | x ∈ EVar(ρ1)∪EVar(ρ2)}. Since ℓ2|pτσ = ℓ1τσ there

exists an mgu δ of ℓ2|p and ℓ1, and a substitution γ such that δγ = τσ. Let s′ = ℓ2δ[r1δ]p and
t′ = r2δ. We claim that ⟨ρ1, p, ρ2⟩ is an overlap of R, resulting in the constrained critical pair
s′ ≈ t′ [φδ ]. Condition (1) of Definition 4 is trivially satisfied. For condition (2) we need to
show p ∈ PosF (ℓ2). This follows from p ∈ PosF (ℓ2µ), µ(x) ∈ Val for every x ∈ Dom(µ), and
root(ℓ2µ|p) = root(ℓ1ν) ∈ F \ Val. For condition (3) it remains to show that δ(x) ∈ Val ∪ V
for all x ∈ LVar(ρ1) ∪ LVar(ρ2). Suppose to the contrary that root(δ(x)) ∈ F \ Val for some
x ∈ LVar(ρ1)∪LVar(ρ2). Then root(δ(x)) = root(γ(δ(x))) = root(σ(τ(x))) ∈ F \ Val, which
contradicts τ ⊨ φ. Condition 4 follows from the identity δγ = τσ together with τ ⊨ φ which
imply δγ ⊨ φ and thus φδ is satisfiable. Hence also φ1δ ∧ φ2δ is satisfiable. It remains to show
condition 5, so let p = ϵ and further assume that ρ1 and ρ2 are variants. So there exists a
variable renaming π such that ρ1π = ρ2. In particular, ℓ1π = ℓ2 and r1π = r2. Let x ∈ Var(ℓ1).
If x ∈ LVar(ρ1) = Dom(ν) then τ(x) = ν(x) ∈ Val. Moreover, π(x) ∈ LVar(ρ2) = Dom(µ) and
thus τ(π(x)) = µ(π(x)) ∈ Val. Since ℓ1τ and ℓ2τ are unifiable, π(τ(x)) = τ(x) = τ(π(x)). If
x /∈ LVar(ρ1) then τ(x) = x, π(x) /∈ LVar(ρ2) and similarly τ(π(x)) = π(x) = π(τ(x)). All
in all, ℓ1τπ = ℓ1πτ = ℓ2τ . Now, if Var(r1) ⊆ Var(ℓ1) then we obtain r1τπ = r1πτ = r2τ ,
contradicting the fact that ℓ1ν → r1ν and ℓ2µ → r2µ are not variants. We conclude that
s′ ≈ t′ [φδ ] is a constrained critical pair of R. So we can take φ′ = φδ. Clearly, s = s′γ and
t = t′γ. Moreover, γ ⊨ φ′ since φ′γ = φτσ = φτ and τ ⊨ φ.

The converse does not hold in general.

Example 6. Consider the LCTRS R consisting of the single rule a → x [x = 0] where the
variable x ranges over the integers. Since x appears on the right-hand side but not the left,
we obtain a constrained critical pair x ≈ x′ [x = 0 ∧ x′ = 0]. Since the constraint uniquely
determines the values of x and x′, the TRS R consists of the single rule a → 0. Obviously R
has no critical pairs.

The above example also shows that orthogonality of R does not imply orthogonality of R.
However, the counterexample relies somewhat on a technicality in condition (5) of Definition 4.
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It only occurs when the two rules ℓ1 → r1 [φ1 ] and ℓ2 → r2 [φ2 ] involved in the critical pair
overlap at the root and have instances ℓ1τ1 → r1τ1 and ℓ2τ2 → r2τ2 in R which are variants of
each other. By dealing with such cases separately we can prove the following theorem.

Theorem 7. For every constrained critical pair s ≈ t [φ ] of R and every substitution σ with
σ ⊨ φ, (1) sσ = tσ or (2) there exist a critical pair u ≈ v of R and a substitution δ such that
sσ = uδ and tσ = vδ.

Proof. Let s ≈ t [φ ] be a constrained critical pair of R originating from the critical peak
s = ℓ2θ[r1θ]p ← ℓ2θ[ℓ1θ]p → r2θ = t with variants ρ1 : ℓ1 → r1 [φ1 ] and ρ2 : ℓ2 → r2 [φ2 ] of
rules in Rrc, and an mgu θ of ℓ2|p and ℓ1 where p ∈ PosF (ℓ2). Moreover θ(x) ∈ Val ∪ V for all
x ∈ LVar(ρ1)∪LVar(ρ2), and φ = φ1θ∧φ2θ∧ψθ with ψ =

∧
{x = x | x ∈ EVar(ρ1)∪EVar(ρ2)}.

Let σ be a substitution with σ ⊨ φ. Hence θσ ⊨ φ1 ∧ φ2 ∧ ψ and further σ(θ(x)) ∈ Val for all
x ∈ LVar(ρ1) ∪ LVar(ρ2). We split θσ into substitutions τ1, τ2 and π as follows:

τi(x) =

{
xθσ if x ∈ LVar(ρi)
x otherwise

π(x) =

{
xθσ if x ∈ Dom(θσ) \ (LVar(ρ1) ∪ LVar(ρ2))
x otherwise

for i ∈ {1, 2}. From θσ ⊨ φ1 ∧ φ2 ∧ ψ and Var(φi) ⊆ LVar(ρi) we infer τi ⊨ φi for i ∈ {1, 2}.
Since Dom(τi) = LVar(ρi), ℓiτi → riτi ∈ R for i ∈ {1, 2}. Furthermore, τiπ = τi ∪ π for
i ∈ {1, 2}. Hence ℓ2|pτ2π = ℓ2|pθσ = ℓ1θσ = ℓ1τ1π, implying that ℓ2|pτ2 and ℓ1τ1 are unifiable.
Let γ be an mgu of these two terms. There exists a substitution δ such that γδ = π. Clearly
p ∈ PosF (ℓ2τ2). If p ̸= ϵ or ℓ1τ1 → r1τ1 and ℓ2τ2 → r2τ2 are not variants, then u ≈ v with u =
ℓ2τ2γ[r1τ1γ]p and v = r2τ2γ is a critical pair of R. Moreover tσ = r2θσ = r2τ2π = r2τ2γδ = vδ,
and similarly sσ = uδ. Thus option (2) is satisfied. If p = ϵ and ℓ1τ1 → r1τ1 and ℓ2τ2 → r2τ2
are variants then sσ = r1τ1γδ = r2τ2γδ = tσ, fulfilling (1).

A direct consequence is that weak orthogonality of R implies weak orthogonality of R.

3 Confluence
Using Theorem 5 we can easily transfer confluence criteria for TRSs to LCTRSs. Rather than
reproving the confluence results reported in [1, 4, 2], we illustrate this by extending the result of
van Oostrom [3] concerning (almost) development closed critical pairs from TRSs to LCTRSs.
The following result from [4] plays an important role.

Lemma 8. Suppose s ≈ t [φ ] ∼→p u ≈ v [ψ ] with γ ⊨ φ and position p. If p ⩾ 1 then sγ → uδ
and tγ = vδ for some substitution δ with δ ⊨ ψ. If p ⩾ 2 then sγ = uδ and tγ → vδ for some
substitution δ with δ ⊨ ψ.

Definition 9. Let R be an LCTRS. The multi-step relation ◦−→ on terms is defined inductively
as follows: (1) x ◦−→ x for all variables x, (2) f(s1, . . . , sn) ◦−→ f(t1, . . . , tn) if si ◦−→ ti with
1 ⩽ i ⩽ n, (3) ℓσ ◦−→ rτ if ℓ → r [φ ] ∈ Rrc, σ ⊨ ℓ → r [φ ] and σ ◦−→ τ , where σ ◦→ τ denotes
σ(x) ◦−→ τ(x) for all variables x ∈ Dom(σ).

The next definition inductively defines multi-step rewriting on constrained terms.

Definition 10. Let R be an LCTRS. The multi-step relation ◦−→ on constrained terms is
defined inductively as follows:

1. x [φ ] ◦−→ x [φ ] for all variables x,

4



Reducing Confluence of LCTRSs to Confluence of TRSs Mitterwallner, Schöpf, Middeldorp

2. f(s1, . . . , sn) [φ ] ◦−→ f(t1, . . . , tn) [φ ] if si [φ ] ◦−→ ti [φ ] for 1 ⩽ i ⩽ n,

3. ℓσ [φ ] ◦−→ rτ [φ ] if ρ : ℓ → r [ψ ] ∈ Rrc, σ(x) ∈ Val ∪ Var(φ) for all x ∈ LVar(ρ), φ is
satisfiable, φ⇒ ψσ is valid, and σ [φ ] ◦−→ τ [φ ].

Here σ [φ ] ◦−→ τ [φ ] denotes σ(x) [φ ] ◦−→ τ(x) [φ ] for all variables x ∈ Dom(σ). The multi-step
rewrite relation ∼◦−→ on constrained terms is then defined as ∼ · ◦−→ · ∼.

Lemma 11. If s [φ ] ◦−→ t [φ ] then sδ ◦−→ tδ for all substitutions δ ⊨ φ.

Proof. We proceed by induction on ◦−→. In case 1 we have x [φ ] ◦−→ x [φ ], and xδ ◦−→ xδ
holds trivially. In case 2 we have s = f(s1, . . . , sn), t = f(t1, . . . , tn) and si [φ ] ◦−→ ti [φ ] for
1 ⩽ i ⩽ n. From the induction hypothesis we obtain siδ ◦−→ tiδ for all 1 ⩽ i ⩽ n, which further
implies sδ ◦−→ tδ. In case 3 we have s = ℓσ and t = rσ for some rule ρ : ℓ→ r [ψ ] ∈ Rrc, σ(x) ∈
Val∪Var(φ) for all x ∈ LVar(ρ), φ is satisfiable, φ⇒ ψσ is valid, and σ(x) [φ ] ◦−→ τ(x) [φ ] for
all x ∈ Var(φ). From the induction hypothesis we obtain σ(x)δ ◦−→ τ(x)δ for all x ∈ Var(φ).
Moreover, since δ ⊨ φ we have δ ⊨ ψσ and thus also σδ ⊨ ψ. Therefore sδ = ℓσδ ◦−→ rτδ = tδ
as desired.

Lemma 12. If s ≈ t [φ ]
∼◦−→⩾1 u ≈ v [ψ ] then for all substitutions σ ⊨ φ there exists a δ ⊨ ψ

such that sσ ◦−→ uδ and tσ = vδ.

Proof. By unfolding the definition of ∼◦−→ we obtain s ≈ t [φ ] ∼ s′ ≈ t′ [φ′ ] ◦−→⩾1 u
′ ≈ v′ [φ′ ] ∼

u ≈ v [ψ ]. Let σ be a substitution with σ ⊨ φ. From the definition of ∼ we obtain a substitution
τ such that τ ⊨ φ′, sσ = s′τ and tσ = t′τ . As all contracted redexes in the multi-step s′ ≈ t′ [φ′ ]
are below the position 1, this corresponds to case 2 in Definition 10 with s′ and t′ being the first
and second argument of ≈. Hence s′ [φ′ ] ◦−→ u′ [φ′ ] and t′ = v′. We therefore obtain t′τ = v′τ
and s′τ ◦−→ u′τ from Lemma 11. Now considering the equivalence u′ ≈ v′ [φ′ ] ∼ u ≈ v [ψ ]
together with τ ⊨ φ′ we obtain a substitution δ such that δ ⊨ ψ, u′τ = uδ and v′τ = vδ. Putting
this all together we have sσ = s′τ ◦−→ u′τ = uδ and tσ = t′τ = v′τ = vδ.

Definition 13. A constrained critical pair s ≈ t [φ ] is development closed if s ≈ t [φ ]
∼◦−→⩾1

u ≈ v [ψ ] for some trivial u ≈ v [ψ ]. A constrained critical pair is almost development closed if
it is an inner critical pair and development closed, or it is an overlay and s ≈ t [φ ] ∼◦−→⩾1 · ∼→∗

⩾2

u ≈ v [ψ ] for some trivial u ≈ v [ψ ]. An LCTRS is called (almost) development closed if all
its constrained critical pairs are (almost) development closed.

Lemma 14. If a constrained critical pair s ≈ t [φ ] is almost development closed then for all
substitutions σ with σ ⊨ φ we have sσ ◦−→ · ∗← tσ.

Proof. Let s ≈ t [φ ] be an almost development closed constrained critical pair, and σ ⊨ φ some
substitution. From Definition 13 we obtain s ≈ t [φ ] ◦−→⩾1 u

′ ≈ v′ [ψ′ ] →∗
⩾2 u ≈ v [ψ ] where

uτ = vτ for all τ ⊨ ψ for some constrained term u′ ≈ v′ [ψ′ ]. Looking at the first part of
the sequence, s ≈ t [φ ] ◦−→⩾1 u

′ ≈ v′ [ψ′ ] and sσ ◦−→ u′δ where v′δ = tσ for some δ ⊨ ψ′

by Lemma 12. For the second part of the sequence u′ ≈ v′ [ψ′ ] →∗
⩾2 u ≈ v [ψ ] we obtain

v′δ →∗ vγ, u′δ = uγ for some γ ⊨ ψ, by repeated application of Lemma 8. Moreover we have
uγ = vγ. Hence sσ ◦−→ u′δ = uγ = vγ ∗← v′δ = tσ.

Theorem 15. If an LCTRS R is almost development closed then so is R.
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Proof. Take any critical pair s ≈ t from R. From Theorem 5 we know that there exists a
constrained critical pair s′ ≈ t′ [φ ] in R where s′σ = s and t′σ = t for some σ ⊨ φ. Since
the constrained critical pair must be almost development closed, Lemma 14 yields s = s′σ ◦−→
· ∗← t′σ = t if it is an overlay and s = s′σ ◦−→ t′σ = t otherwise. This proves that R is almost
development closed.

Interestingly, the converse does not hold, as seen in the following example.

Example 16. Consider the LCTRS R with the theory LIA and consisting of the rules:

f(x)→ g(x) f(x)→ h(x) [1 ⩽ x ⩽ 2 ] g(x)→ h(2) [x = 2z ] g(x)→ h(1) [x = 2z + 1 ]

The TRS R consists of the rules

f(x)→ g(x) f(1)→ h(1) g(n)→ h(1) for all odd n ∈ Z
f(2)→ h(2) g(n)→ h(2) for all even n ∈ Z

and has two (modulo symmetry) critical pairs g(1) ≈ h(1) and g(2) ≈ h(2). Since g(1) ◦−→ h(1)
and g(2) ◦−→ h(2), R is almost development closed. The constrained critical pair g(x) ≈
h(x) [1 ⩽ x ⩽ 2 ] is not almost development closed, since it is a normal form with respect to
the rewrite relation on constrained terms.

This also makes intuitive sense, since a rewrite step s ≈ t [φ ] ∼→ u ≈ v [ψ ] implies that
the same step can be taken on all instances sσ ≈ tσ where σ ⊨ φ. However it may be the
case, like in the above example, that different instances of the constrained critical pair require
different steps to obtain a closing sequence, which cannot directly be modeled using rewriting
on constraint terms.

Since left-linearity of R is preserved and left-linear almost development closed TRSs are
confluent [3] the following corollary is obtained via Theorem 15. In fact R only has to be linear
in the variables x /∈ LVar, since that is sufficient for R to be linear.

Corollary 17. Left-linear almost development closed LCTRSs are confluent.

4 Conclusion
We presented a left-linearity preserving transformation from LCTRSs into TRSs such that crit-
ical pairs in the latter correspond to constrained critical pairs in the former. As a consequence,
confluence results for TRSs based on restricted joinability conditions carry directly over to
LCTRSs. This drastically simplifies correctness proofs (like the ones in [1, 2]) and makes the
formalization of confluence proofs for LCTRSs in a proof assistant a realistic goal.
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