
Confluence of a Computational Lambda Calculus for

Higher-Order Relational Queries

Claudio Sacerdoti Coen and Riccardo Treglia

Università di Bologna, Bologna, Italy
claudio.sacerdoticoen@unibo.it

riccardo.treglia@unibo.it

Abstract

We study the operational semantics of an untyped computational lambda-calculus
whose normal forms represent queries on databases. The calculus extends the compu-
tational core with additional operations and rewriting rules whose effect is to turn the
monadic type of computations into a multiset monad that capture tables. Moreover, we
introduce comonadic constructs and additional rewriting rules to be able to form tables of
tables. Proving confluence becomes tricky: we succeed exploiting decreasing diagrams.

1 Introduction to the Calculus: Syntax and Reduction
Relation

The second author et al. have introduced and studied in [dLT20, FGdLT22] the computational
core λ©, a λ-calculus inspired by Moggi’s computational one [Mog89, Mog91]. The calculus
differentiates between values and computations, the latter obtained via return/bind constructs
for a generic monad. The strong operational semantics is obtained simply orienting the monadic
laws, and confluence was proved among other properties.

In this work, we extend λ© with specific additional operations and rewriting rules over com-
putations that turn the generic monad into a multiset monad: the 0-ary operation ∅ represents
the empty multiset, ⊎ the union of multisets, and the monadic return, denoted by [V], is now
interpreted as forming a singleton. The rewriting rules partially capture the algebraicity of the
operations in the sense of Plotking and Power [PP02, PP03] by letting the operators commute
with those rewriting contexts that are built from bind operators, only. Because in λ©, contrary
to Moggi’s computational λ-calculus, values and computations are rigidly split, the extension
obtained so far does not allow formation of multisets of multisets, because multisets are not
values. To overcome the issue, we add two more co-monadic constructs to reflect computa-
tions into values, following ideas by [Fil94]. These constructs are the thunk/force constructs
of Levy’s call-by-push-value [Lev99]; however, our calculus is strong, i.e. it allows reduction
inside values as well. Finally, we introduce an equational theory over computations to capture
associativity and commutativity of ⊎ and idempotency of ∅: this is the minimal theory that
turns the calculus into a confluent one.

The exact choice of rewriting and equational rules that we pick seems rather arbitrary at
first: the empty set is not the neutral element of ⊎ and the monadic operations are not forced to
be completely algebraic (e.g. ⊎ does not commute with contexts that include thunks or force).
It is to the (untyped) NRCλ calculus [RC20] as λ© is to the (untyped) λ-calculus, and indeed
we are introducing it with the intent of studying semantic properties of the NRCλ-calculus
via intersection types, trying to scale what the second author already did for λ©. The NRCλ
calculus is an example of nested, higher-order relational calculus that provides a principled
foundation for integrating database queries into programming languages. In NRCλ, a database

Confluence of a Comp. λ-Calculus for HO Relational Queries Sacerdoti Coen, Treglia

table is represented by the multiset of its rows, where each row is just a value (NRCλ has
tuples). The main properties of the calculus are that it is confluent and strongly normalizing
and, moreover, some normal forms can be directly interpreted as SQL queries (those such that
the types of the free variables and of the result are just tables of base types and not tables of
tables). In particular, the set of rewriting and equational rules that our calculus inherits from
the NRCλ-calculus is the minimal set that grants the previous properties.

Because of the important application to database, from now on we call our extension of the
λ© calculus the λSQL calculus.

Contributions The first contribution of the work is the design of the λSQL calculus, which
goes beyond the mere effort to fit the NRCλ into a well-assessed monadic frame. Indeed, this
can be considered as an experiment of extending λ© with algebraic operators (other cases are
[dT21, AKR23]), but here it immediately highlights, for example, the need to introduce other
kind of constructs, such as the comonadic unit, that could be added to λ© independently of the
algebraic operators.

The second contribution is the proof of a fundamental property of the calculus: confluence.
The proof is labour-intensive because the rewriting rules associated to algebraicity of the op-
erators turn them into control operators: each operator can capture its context and then erase
or duplicate it, and many critical pairs arise. Moreover, there is also the issue of the interplay
between the equational theory and the rewriting theory. Technically, we make strong use of
von Oostrom’s decreasing diagram technique [vO94], the most difficult point of which is to
find the order relation between the labels of the calculus reduction rule. This will be done by
considering orthogonal and nested closures of certain reduction rules, inspired by the work in
[ADJL17], postponing in a final step the commutation with respect to the union operator.

Long-term perspectives Our long-term goal is to extract from the confuence proof based on
decreasing diagrams an order over reduction rules to design a well-behaved normalizing strategy.
We will then define an appropriate intersection type system based on tight multi-types [AGK20]
to capture quantitatively the set of terminating queries according to that strategy, the length
of their reduction and the size of the normal forms, i.e. the size of the computed SQL queries.
Ultimately we want to capture even more quantitative information over the queries itself.

Syntax and Reduction The syntax of the untyped computational SQL λ-calculus, shortly
λSQL, and its reduction relation are reported below:

Definition 1.1 (Term syntax).

Val : V,W ::= x | λx.M | ⟨⟨M⟩⟩
Com : M,N ::= [V] |M ⋆ V |M ⊎M | ∅ | !V

Like in λ©, terms are of either sorts Val and Com, representing values and computations,
respectively. Variables x, abstractions λx.M — where x is bound in M — and the constructors
[V] and M ⋆ V , written return V and M >>= V in Haskell-like syntax, respectively, form
the syntax of λ©, which is agnostic on the interpretation of computations. In λSQL, instead,
computations are meant to be understood as tables, i.e. multisets of values, and therefore [V]
is interpreted as the singleton whose only element is V and ⋆ as the bind operator of the list
monad. The binary and 0-ary operators ⊎ and ∅ are additionally used to construct tables. The
pair of constructs ⟨⟨·⟩⟩ and ! are used to reflect computations into labels, allowing to form tables
of (reflected) tables. Note that ⟨⟨·⟩⟩ can be understood as the unit of a comonad. Terms are
identified up to renaming of bound variables so that the capture avoiding substitution M{V/x}
is always well defined; FV (M) denotes the set of free variables in M . Finally, like in λ©,
application among computations can be encoded by MN ≡M ⋆ (λz. N ⋆ z), where z is fresh.

2

Confluence of a Comp. λ-Calculus for HO Relational Queries Sacerdoti Coen, Treglia

Wrapping up, the syntax can be condensed in the motto:

λSQL ≈ λ© + operations over tables + monadic reification/reflection

with the latter extension being orthogonal to the second one.
We are now in place to introduce the λSQL reduction relation, later closed under contexts:

Definition 1.2 (Reduction). The reduction relation is the union of the following binary rela-
tions over Com:

βc) [V] ⋆ λx.M 7→βc M{V/x}
σ) (L ⋆ λx.M) ⋆ λy.N 7→σ L ⋆ λx.(M ⋆ λy.N) for x ̸∈ fv(N)

⊎1) (M ⊎N) ⋆ λx.P 7→⊎1
(M ⋆ λx.P) ⊎ (N ⋆ λx.P)

⊎2) M ⋆ λx.(N ⊎ P) 7→⊎2
(M ⋆ λx.N) ⊎ (M ⋆ λx.P)

∅1) ∅ ⋆ λx.M 7→∅1
∅

∅2) M ⋆ λx.∅ 7→∅2
∅

!) !⟨⟨M⟩⟩ 7→! M

The first two rules, taken from λ©, are oriented monadic equations. The next four rules
capture algebraicity of the ⊎ operator, but only w.r.t. contexts made of ⋆ only (e.g. there is no
rule (M ⊎N)⊎P 7→ (M ⊎P)⊎ (N ⊎P) because that would be unsound for tables). The latter
rule is the usual rule for the thunk/force redex in call-by-push-value.

The reduction −→λSQL
(when it is clear from the context we omit the subscript) is the con-

textual closure of λSQL under computational contexts, where such contexts are mutually defined
with values contexts as follows:

V ::= ⟨·Val⟩ | λx.C | ⟨⟨C⟩⟩ Value Contexts

C ::= ⟨·Com⟩ | [V] | C ⋆ V |M ⋆ V | C ⊎M |M ⊎ C | !V Computation Contexts

Notice that the hole of each kind of context has to be filled in with a proper kind of term.
We equip the calculus with a sound, but not complete, equational theory for multisets, taken

from [RC20].

Definition 1.3 (Equational theory E).

Comm) M ⊎N = N ⊎M

Empty) ∅ ⊎ ∅ = ∅

2 Route to Confluence

We modularize the proof of confluence by first showing that the equational part can be post-
poned.

Getting rid of the equational theory. A classic tool to modularize a proof of confluence
is Hindley-Rosen lemma, stating that the union of confluent reductions is itself confluent if
they all commute with each other. Let us first define what commutation between a reduction
relation and an equational theory means, and then state that result properly.

Definition 2.1. Given a reduction relation −→ and an equational theory =E, we say that −→
commutes over =E if for all M,N,L such that M =E N −→ L, there exists P such that
M −→ P =E L.

3

Confluence of a Comp. λ-Calculus for HO Relational Queries Sacerdoti Coen, Treglia

Lemma 2.2 (Hindley-Rosen). Let R1 and R2 be relations on the set A. If R1 and R2 are
confluent and commute with each other, then R1 ∪R2 is confluent.

We will exploit that to focus just on the reduction relation while proving confluence.

Lemma 2.3. =E commutes with −→.

Hence, by Lemma 2.3 one needs just the confluence of −→ to assert the confluence of −→
modulo E.

Decreasing diagram. Now that is possible to omit the equational theory induced by Defi-
nition 1.3, we need to prove the commutation of all the reduction rules, and in this intent we
use decreasing diagrams by van Oostrom [vO94, vO08]. This is a powerful and general tool
to establish commutation properties, which reduces the problem of showing commutation to a
local test; in exchange of localization, the diagrams need to be decreasing with respect to some
labelling.

Definition 2.4 (Decreasing, [vO94]). An rewriting relation R is locally decreasing if there
exist a presentation (R, {−→i}i∈I) of R and a well-founded strict order > on I such that:

←
i
·→
j
⊆ ∗←→∨i

· =−→
j
· ∗←→
∨{ij}

· =←−
i
· ∗←→∨j

,

where ∨Ī = {i ∈ I | ∃k ∈ Ī . k > i}, ∨i abbreviates ∨{i}, and ∗−→ (resp.
∗←→) and

=−→ (resp.
=←→) are the transitive and reflexive closures of the relation −→ (resp. ↔).

Let us give a hint the above definition. The property of decreasiness is stated for a relations,
seen as a family of labelled binary relations. Such labels are equipped with a well-founded, strict,
order such that every peak can be rejoined in a particular way, regulated by that specific order
on labels.

The following theorem, due to van Oostrom, states that decreasiness implies confluence.

Theorem 2.5 (van Oostrom [vO94, vO08]). A Every locally decreasing rewriting relation R is
confluent.

Which order? Now the point is to find a proper labelling and a strict order on that labelling
that satisfies the property of decreasiness. Let’s start with harmless reductions, involving rules
of union and empty.

(M1 ⊎M2) ⋆ λx.∅ ⊎1

- (M1 ⋆ λx.∅) ⊎ (M2 ⋆ λx.∅)

∅
�

2

∅2

∅
2

-

∅ ⋆ λx.(M1 ⊎M2) ⊎2

- (∅ ⋆ λx.M1) ⊎ (∅ ⋆ λx.M2)

∅
�

2

∅1

∅
1

-

By the above diagrams it seems clear that rules concerning the empty table should be top
elements of the labelling we are searching for.

When it comes to comparing ⊎1 vs. σ, the situation is a bit tricker because ⊎1 only quasi-
commutes over σ. The following diagrams shows that ⊎1 must be made greater than σ.

((L1 ⊎ L2) ⋆ λx.M) ⋆ λy.N
σ

- (L1 ⊎ L2) ⋆ λx.(M ⋆ λy.N)

M̄1

⊎1

?

⊎1

- ·
2

σ
- M̄2

⊎1

?

4

Confluence of a Comp. λ-Calculus for HO Relational Queries Sacerdoti Coen, Treglia

where M̄1 = ((L1⋆λx.M)⊎(L2⋆λx.M))⋆λy.N), M̄2 = (L1⋆λx.(M⋆λy.N))⊎(L2⋆λx.(M⋆λy.N))
The case for βc vs ⊎2, however, shows the need for a non-trivial approach, since depending

in which context the rules are applied, we need either βc > ⊎2 or βc < ⊎2. Indeed,

[V] ⋆ λx.(N ⊎ P)
βc - (N ⊎ P){V/x}

([V] ⋆ λx.N) ⊎ ([V] ⋆ λx.P)

⊎2

? βc

2
- N{V/x} ⊎ P{V/x}

wwwwwwwww

. . . but . . .

V1 = λx.(M ⋆ λy.(N1 ⊎ N2))
V2 = λx.((M ⋆ λy.N1) ⊎ (M ⋆ λy.N2))

[V1] ⋆ λz.([z] ⋆ z)
⊎2- [V2] ⋆ λz.([z] ⋆ z)

[V1] ⋆ V1

βc

? ⊎2

2
- [V2] ⋆ V2

βc

?

Generalized version of unions and Multi-reduction. Before stating the main result we
have to introduce two new notion of reduction that will lead to a right labelling order to prove
the decreasiness. The first one is a generalized version of rules ⊎1 and ⊎2, taking into account
not just union symbols in the scope of the rule one by one, but all together.

Definition 2.6 (Generalized union step). Let us define as generalized ⊎1 and ⊎2 steps, notation
Gen⊎1 and Gen⊎2, as follows

Gen⊎1) (. . . (M1 ⊎ M2) ⊎ . . . ⊎ Mn) ⋆ λx.N 7→Gen⊎1
(M ⋆ λx.N) ⊎ (M2 ⋆ λx.N) ⊎ . . . ⊎ (Mn ⋆ λx.N)

Gen⊎2) M ⋆ λx.(. . . (N1 ⊎ N2) ⊎ . . . ⊎ Nn) 7→Gen⊎2
(M ⋆ λx.N1) ⊎ (M ⋆ λx.N2) ⊎ . . . ⊎ (M ⋆ λx.Nn)

Second, the confluence proof we are going to sketch avoids the issue with βc vs. ⊎2 reported
above by considering multiple reductions. Roughly speaking, this means that we consider a
labelling that comprehends reduction rules that can perform simultaneously in many ’part’ of
the term, called formally positions. For a fair formalization of these basic notions of rewriting
theory, please see, e.g., [BN98].

A parallel rewrite step is a sequence of reductions at a set P of parallel positions,
ensuring that the result does not depend upon a particular sequentialization of P . Given a
reduction step γ we define its parallel version as Parγ.

We are now ready to state our main result:

Theorem 2.7 (Confluence). λSQL is confluent.

Proof sketch. 1. All reduction rules strongly commute with !: proved by tedious inspection
of all cases.

2. Under the following order for parallel rewriting steps, all remaining rules are decreasing
as well: also proved by tedious inspection of all cases.

Parβc > Parσ > ParGen⊎2 > ParGen⊎2 > ∅1 > ∅2

The diagrams for the cases Par⊎1 vs Par⊎2 and Par⊎2 vs ∅1 only hold up to E.
E.g., ∅ ∅1

← ∅ ⋆ λx.M ⊎N −→⊎2
−→2

∅1
∅ ⊎ ∅.

3. Confluence is obtained combining the previous points with Lemma 2.3 and Theorem 2.5,
following [ADJL17].

5

Confluence of a Comp. λ-Calculus for HO Relational Queries Sacerdoti Coen, Treglia

References

[ADJL17] Ali Assaf, Gilles Dowek, Jean-Pierre Jouannaud, and Jiaxiang Liu. Untyped Confluence
In Dependent Type Theories. working paper or preprint, April 2017.

[AGK20] Beniamino Accattoli, Stéphane Graham-Lengrand, and Delia Kesner. Tight typings and
split bounds, fully developed. J. Funct. Program., 30:e14, 2020.

[AKR23] Sandra Alves, Delia Kesner, and Miguel Ramos. Quantitative global memory.
arXiv:2303.08940, 2023.

[BN98] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge University
Press, 1998.

[dLT20] U. de’ Liguoro and R. Treglia. The untyped computational λ-calculus and its intersection
type discipline. Theor. Comput. Sci., 846:141–159, 2020.

[dT21] Ugo de’Liguoro and Riccardo Treglia. Intersection types for a λ-calculus with global store.
In Niccolò Veltri, Nick Benton, and Silvia Ghilezan, editors, PPDP 2021: 23rd Interna-
tional Symposium on Principles and Practice of Declarative Programming, Tallinn, Esto-
nia, September 6-8, 2021, pages 5:1–5:11. ACM, 2021.

[FGdLT22] Claudia Faggian, Giulio Guerrieri, Ugo de’ Liguoro, and Riccardo Treglia. On reduction and
normalization in the computational core. Mathematical Structures in Computer Science,
32(7):934–981, 2022.

[Fil94] A. Filinski. Representing monads. In Conference Record of POPL’94: 21st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 446–457.
ACM Press, 1994.

[Lev99] Paul Blain Levy. Call-by-push-value: A subsuming paradigm. In Typed Lambda Calculi
and Applications, 4th International Conference (TLCA’99), volume 1581 of Lecture Notes
in Computer Science, pages 228–242, 1999.

[Mog89] E. Moggi. Computational lambda-calculus and monads. In Proceedings of the Fourth An-
nual Symposium on Logic in Computer Science (LICS ’89), pages 14–23. IEEE Computer
Society, 1989.

[Mog91] E. Moggi. Notions of computation and monads. Inf. Comput., 93(1):55–92, 1991.

[PP02] G. D. Plotkin and J. Power. Notions of computation determine monads. In FOSSACS
2002, volume 2303 of Lecture Notes in Computer Science, pages 342–356. Springer, 2002.

[PP03] G. D. Plotkin and J. Power. Algebraic operations and generic effects. Appl. Categorical
Struct., 11(1):69–94, 2003.

[RC20] Wilmer Ricciotti and James Cheney. Strongly normalizing higher-order relational queries.
In 5th International Conference on Formal Structures for Computation and Deduction,
FSCD 2020, June 29-July 6, 2020, Paris, France (Virtual Conference), pages 28:1–28:22,
2020.

[Ter03] Terese. Term rewriting systems, volume 55 of Cambridge tracts in theoretical computer
science. Cambridge University Press, 2003.

[vO94] Vincent van Oostrom. Confluence by decreasing diagrams. Theor. Comput. Sci.,
126(2):259–280, 1994.

[vO08] Vincent van Oostrom. Confluence by decreasing diagrams converted. In Rewriting Tech-
niques and Applications, 19th International Conference, RTA 2008,, volume 5117 of Lecture
Notes in Computer Science, pages 306–320. Springer, 2008.

6

	Introduction to the Calculus: Syntax and Reduction Relation
	Route to Confluence

