
A New Format for Rewrite Systems∗

Takahito Aoto1, Nao Hirokawa2, Dohan Kim3, Misaki Kojima4, Aart
Middeldorp3, Fabian Mitterwallner3, Naoki Nishida4, Teppei Saito2, Jonas

Schöpf3, Kiraku Shintani2, René Thiemann3, and Akihisa Yamada5

1 Faculty of Engineering, Niigata University, Japan
2 School of Information Science, JAIST, Japan

3 Department of Computer Science, University of Innsbruck, Austria
4 Department of Computing and Software Systems, Nagoya University, Japan
5 National Institute of Advanced Industrial Science and Technology, Japan

Abstract

We propose a new format for a variety of rewrite systems, to replace the current COPS
format used in the Confluence Competition. We include a proposal for logically constrained
rewrite system, to prepare for a future competition category.

1 Introduction

The Confluence Competition (CoCo) [5]1 is an annual competition in which software tools try
to solve confluence-related problems for a variety of rewrite formalisms. Problems in CoCo
are selected from COPS [3],2 an online database for confluence and related properties in term
rewriting.

In the basic COPS format the rewrite rules of the problem at hand are specified and the
variables are declared, but the function symbols are left implicit. This design decision goes
back to the Termination and Complexity Competition (termCOMP) [1]3 and is based on the
assumption that the property that needs to be (dis)proved is not affected by additional function
symbols. This is true for most CoCo and termCOMP categories, but not for all. For instance,
ground-confluence is well-known not to be preserved under signature extension. Since the
corresponding GCR category employs the many-sorted COPS format, in which every function
symbol is specified using a sort declaration, this causes no problem. Other properties that are
known not to be closed under signature extension include NFP and UNR [4]. Also, termination
under outermost strategies (corresponding to the termCOMP category TRS Outermost) is not
preserved under signature extension [2]. For the corresponding categories in CoCo, besides
the basic format, problems may be specified in the extended COPS format, which allows the
declaration of additional function symbols.

We propose a change in the COPS format in which function symbols that can be used
to construct terms must be listed, assuming that we have infinitely many variables (of any
type) at our disposal, which is the usual convention in the term rewriting literature. In this
paper we propose new formats for term rewrite systems (TRSs), conditional term rewrite sys-
tems (CTRSs), context-sensitive term rewrite systems (CSTRSs), a combination of the latter
two (CSCTRSs), many-sorted term rewrite systems (MSTRSs), and logically constrained term
rewrite systems (LCTRSs). For the latter, no previous format is known. We also describe how

∗This research was funded by the Austrian Science Fund (FWF) project I5943 and JSPS-FWF
JPJSBP120222001.

1http://project-coco.uibk.ac.at/
2https://cops.uibk.ac.at/
3http://termination-portal.org/wiki/Termination_Competition

http://project-coco.uibk.ac.at/
https://cops.uibk.ac.at/
http://termination-portal.org/wiki/Termination_Competition

A New Format for Rewrite Systems Aoto et al.

multiple TRSs are represented. The new format specifies rewrite systems only, thus strategies
like innermost and outermost are not part of the format. We take the stance that these should
be part of competition categories, to avoid unnecessary duplication in databases.

2 Format

The following code represents the TRS {F(x, x) → A,G(x) → F(x,G(x)),C → G(C)} in our
new syntax:

; @author Takahito Aoto

; @author Junichi Yoshida

; @author Yoshihito Toyama

; @doi 10.1145/322217.322230

; p. 813, attributed to Barendregt

(format TRS)

(fun F 2)

(fun A 0)

(fun G 1)

(fun C 0)

(rule (F x x) A)

(rule (G x) (F x (G x)))

(rule C (G C))

The new format adopts a Lisp/Scheme-like syntax. All specifications are written in the form of
S-expressions. A semicolon (;) indicates a line comment. The text between a semicolon and the
end of the line is regarded as a comment. A line starting with ; @ indicates meta-information
like information about authors and references.

All formats have an optional meta-info header and a content part. The meta-info part
consists of line comments following a specific format, which are used to embed metadata in a
file. They resemble key-value pairs, where the key is some arbitrary string not containing white
space and the value is a string not containing newlines. In a meta-info line the key is written
using a leading @ symbol, separated from the value by a single space. For example in the line

; @author John Smith

the key author is followed by the value John Smith. Such metadata is used to attribute the
problem to one or more authors or contributors, or cite the literature where the system first
appeared. It is also easily extensible for future uses, for example to indicate that a specific
property (confluence, termination, . . .) is satisfied. The content part of the format represents
the rewrite system, and depends on the type of system represented. The following (extended)
BNF indicates the lexical and parsing rules for the common syntax of the new format:

identifier ::= [^ \t\r\n();:]+ term ::= identifier | (identifier term+)

space ::= [\t\r\n] comment ::= ; [\t]∗ (ϵ | [^@\n] [^\n]∗) \n
number ::= [0− 9]+ meta-info ::= ; @ [^\n]∗ \n

file ::= meta-info∗ content

content ::= TRS | CTRS | MSTRS | LCTRS | CSTRS | CSCTRS

Note that space and comment are ignored in the parsing rules. As illustrated by the introductory

2

A New Format for Rewrite Systems Aoto et al.

TRS CSTRS

CTRS

CSCTRS

MSTRS LCTRS

Figure 1: The formats ordered by inclusion.

example, function applications f(t1, . . . , tn), are written as (f t1 · · · tn), while variables and
constants are written without parentheses.

The relation between the formats is shown in Figure 1, where an arrow between formats
means the target of the arrow is an extension of the source of the arrow.

2.1 TRS Format

The syntax of the TRS format is specified as follows:

TRS ::= (format TRS) fun∗ rule∗
fun ::= (fun identifier number)

rule ::= (rule term term)

Function symbols are declared by (fun f n) together with their arities. Undeclared identifiers
are regarded as variables. The format does not exclude ill-formed TRSs such as {x → f(y)}.
Validation of specifications is beyond the scope of our proposal.

2.2 CTRS Format

The format for CTRSs reuses the parsing rules for fun and term, while the remaining rules look
as follows:

CTRS ::= (format CTRS cond-type) fun∗ rule∗
cond-type ::= oriented | join | semi-equational

rule ::= (rule term term cond∗)

cond ::= (= term term)

For instance, the one-rule oriented CTRS {f(x) → f(y) ⇐ g(x) ≈ z, g(z) ≈ h(y)} is specified
as follows:

(format CTRS oriented)

(fun f 1)

(fun g 1)

(fun h 1)

(rule (f x) (f y) (= (g x) z) (= (g z) (h y)))

3

A New Format for Rewrite Systems Aoto et al.

2.3 CSTRS format

To specify the replacement map, needed for context-sensitive rewriting, the fun parsing rule is
extended with an optional argument:

CSTRS ::= (format CSTRS) fun∗ rule∗
fun ::= (fun identifier number (:replacement-map (number∗))?)

and all other grammar rules are the same as in the TRS format. For example,

(fun f 3 :replacement-map (1 3))

indicates that the first and third argument positions of f are active. Declarations (fun f n) are
equivalent to (fun f n :replacement-map (1 · · · n)), so the full replacement map is default.

2.4 CSCTRS Format

To also allow conditional rules in context-sensitive TRSs the format below is the straightforward
extension of the CTRS and CSTRS formats:

CSCTRS ::= (format CSCTRS cond-type) fun∗ rule∗
cond-type ::= oriented | join | semi-equational

fun ::= (fun identifier number :replacement-map (number∗))

rule ::= (rule term term cond∗)

cond ::= (= term term)

2.5 MSTRS Format

The format for many-sorted TRSs adapts the TRS format as follows:

MSTRS ::= (format MSTRS) sort∗ fun∗ rule∗
sort ::= (sort identifier)

fun ::= (fun identifier type)

type ::= identifier | (-> identifier+ identifier)

rule ::= (rule term term)

For example, the {N, L}-sorted signature {nil : N, cons : N× L → L} is represented as follows:

(sort N)

(sort L)

(fun nil L)

(fun cons (-> N L L))

We adopt arrow notation -> for function types, anticipating that a consistent notation will
be used in a new format for higher-order rewrite systems. Function declarations such as (fun
cons 2) are invalid in the MSTRS format. The sorts of variables used in many-sorted rewrite
rules must be inferred from the rules separately. So the following specification is valid in the
format.

4

A New Format for Rewrite Systems Aoto et al.

(format MSTRS)

(sort N)

(sort L)

(fun f (-> N N))

(fun g (-> L L))

(rule (f x) x)

(rule (g x) x)

Here x in the first rule has sort N whereas x in the second rules has sort L.

2.6 LCTRS Format

The format for logically constrained TRSs extends that of many-sorted TRSs:

LCTRS ::= (format LCTRS) smt-theory∗ smt-def∗ sort∗ fun∗ rule∗
smt-theory ::= (theory theory)

smt-def ::= (define-fun ...)

rule ::= (rule term term (:guard formula)? (:var vars)?)

vars ::= (var∗)

var ::= (identifier identifier)

The smt-theory declaration specifies the theory symbols and types of the LCTRS theory part.
This theory should be available in an off-the-shelf SMT solver. Sensible examples can be found
on the SMT-LIB webpage.4 Furthermore, smt-def must adhere to the define-fun command
of SMT-LIB, and formula must be an SMT-LIB formula of the corresponding theory. Since
SMT-LIB also adopts a syntax based on S-expressions, the lexical and parsing rules remain
consistent. The optional sort declaration (:var vars) is mandatory in the case that sorts of
variables cannot be inferred. For example, assuming the theory Ints, the variables x and y

in the rule (rule a b :guard (not (= x y))) can be of sort Bool or Int. An example of an
LCTRS in the new format is given below:

(format LCTRS)

(theory Ints)

(define-fun isEven ((x Int)) Bool (= (mod x 2) 0))

(sort NList)

(fun build (-> Int NList NList)) (fun nats (-> NList))

(fun cons (-> Int NList NList)) (fun nil (-> NList))

(rule nats (build 0 nil))

(rule (build n xs) (build (+ n 1) (cons n xs))

:guard (and (isEven n) (>= n 0)))

(rule (build n xs) (build (+ n 1) xs)

:guard (and (not (isEven n)) (>= n 0)) :var ((n Int) (xs NList)))

2.7 Multiple Rewrite Systems

Properties like relative termination and commutation rely on two rewrite systems over a com-
mon signature. To represent multiple rewrite systems, we use :number n in the format speci-
fication, where n > 1 specifies the number of rewrite systems. Rewrite rules have an optional

4https://smtlib.cs.uiowa.edu/theories.shtml

5

https://smtlib.cs.uiowa.edu/theories.shtml

A New Format for Rewrite Systems Aoto et al.

argument :index i where 1 ⩽ i ⩽ n specifies that the rule belongs to the i-th rewrite system.
If the argument is not given, then i = 1. We give an example:

(format TRS :number 2)

(fun f 1)

(fun h 2)

(fun a 0)

(fun b 0)

(rule a (f b))

(rule (f a) b :index 1)

(rule (h a a) b :index 2)

(rule (f b) b :index 2)

This example specifies {a → f(b), f(a) → b} as the first and {h(a, a) → b, f(b) → b} as the
second TRS over the common signature {a : 0, b : 0, f : 1, h : 2}.

3 Future Work

We are planning to adopt the new format in CoCo from 2024. Before that, COPS will be
renewed. To support a smooth transition for tool developers, we will offer a tool5 that converts
problems in the old COPS formats to problems in the new syntax. Using the conversion tool,
tools that do not support the new format can participate in CoCo with no effort.

COPS is not the only database for rewrite systems. The Termination Problem Database
(TPDB) also hosts a large collection of rewrite systems. Having a unified database for rewrite
systems with a uniform syntax would be beneficial to the rewriting community. Designing a
new format for higher-order rewrite systems is future work.

Acknowledgements

We thank the anonymous reviewers for helpful comments.

References

[1] Jürgen Giesl, Albert Rubio, Christian Sternagel, Johannes Waldmann, and Akihisa Yamada. The
termination and complexity competition. In Tomáš Vojnar and Lijun Zhang, editors, Proceedings
of the 25th International Conference on Tools and Algorithms for the Construction and Analysis of
Systems, volume 11429 of Lecture Notes in Computer Science, pages 156–166, 2019.

[2] Bernhard Gramlich and Klaus Györgyfalvay. On modularity of termination properties of rewriting
under strategies. In Proceedings of the 12th International Workshop on Termination, pages 59–63,
2012.

[3] Nao Hirokawa, Julian Nagele, and Aart Middeldorp. Cops and CoCoWeb: Infrastructure for con-
fluence tools. In Didier Galmiche, Stephan Schulz, and Roberto Sebastiani, editors, Proceedings of
the 9th International Joint Conference on Automated Reasoning, volume 10900 of Lecture Notes in
Artificial Intelligence, pages 346–353, 2018.

[4] Aart Middeldorp. Modular Properties of Term Rewriting Systems. PhD thesis, Vrije Universiteit,
Amsterdam, 1990.

[5] Aart Middeldorp, Julian Nagele, and Kiraku Shintani. CoCo 2019: Report on the Eighth Confluence
Competition. International Journal on Software Tools for Technology Transfer, 23(6):905–916, 2021.

5A preliminary version of the tool is available at https://ari-informatik.uibk.ac.at/tools/conversion/

6

https://ari-informatik.uibk.ac.at/tools/conversion/

	1 Introduction
	2 Format
	2.1 TRS Format
	2.2 CTRS Format
	2.3 CSTRS format
	2.4 CSCTRS Format
	2.5 MSTRS Format
	2.6 LCTRS Format
	2.7 Multiple Rewrite Systems

	3 Future Work
	References

