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Abstract

We present a method to derive the Z-property, hence confluence, of a first-order term
rewrite system T from completeness of an associated context-sensitive term rewrite system
T , µ with replacement map µ. We generalise earlier such results by only requiring left-
linearity of T and that T -critical peaks be T , µ-critical peaks. We introduce convective
replacement maps as a generalisation of the canonical maps known from the literature.

Background This note concerns a method to transfer confluence of a terminating context-
sensitive term rewrite system (CSR) T , µ to its underlying term rewrite system (TRS) T . The
direct inspiration was [3] in its contemplation of cofinal strategies [8], which raised the obvious
question whether the Z-property could play a rôle in the theory developed there (by Hirokawa
based on earlier work of Gramlich and Lucas), as it is known that the Z-property gives rise
to a (hyper-)cofinal bullet strategy [7] and entails confluence. We answer that question in the
affirmative by providing two assumptions allowing to establish the Z-property [7] for a TRS
and its layered bullet map •⊚, introduced here, that inside–out and layer-wise T , µ-normalises a
term, where the notion of layer is afforded by the replacement map µ of the CSR.

Preliminaries. For first-order term rewriting we base ourselves on [8], for context-sensitive
term rewriting on [1], and for the Z-property on [7]. We will only recapitulate some key notions
relevant to the developments here, referring the reader to the literature for more.

Context-sensitive term rewrite systems are term rewrite systems where contracting a redex
is restricted by a so-called replacement map mapping each function symbol in the signature
to its set of active argument positions. The notion of being active extends compositionally to
an occurrence of one term in another, via the latter occurring only in active arguments of the
function symbols occurring on its path from the root in the former. Given a replacement map,
context-sensitive rewriting only allows to contract active occurrences of redexes. Formally, for
µ a replacement map, a µ-redex is a redex at an active occurrence.

Given a context-sensitive term rewrite system (CSR) T , µ, with T a term rewrite system
(TRS) and a replacement map µ, we use → to denote the rewrite system induced by T , and
↪→ to denote the rewrite system induced by T , µ, contracting µ-redexes only. We will exploit
that, despite appearances, whether or not the occurrence1 ⟨t | C[ ]⟩ of one term t in another
s = C[t] is active, does not depend on the (whole) context C[ ], but only on the function symbols
occurring on its access path, the path from the root to the hole of the context.

The main technique. We are interested in transferring confluence of ↪→ to that of →. To
that end, we will work throughout under the following two assumptions.

(i) T critical peaks are T , µ critical peaks.

(ii) T , µ is a left-linear and complete (confluent and terminating) CSR.

1See [8, Sect. 2.1.1]. Below we will make do with specifying occurrences via paths in terms.
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Remark 1. (1) Without assumption (i) one can’t expect to transfer confluence from ↪→ to
→ because context-sensitive rewriting in T , µ may then miss out on critical peaks of T . For
instance, consider the TRS T with rules a→ b and f(a)→ c where we used (as we will do
below) overlining2 to indicate that the argument of f is frozen, i.e. that µ(f) := ∅. Then ↪→ is
confluent, which may be shown by checking that the only ↪→-reducible terms are a and f(a),
and those are deterministic. In particular, we do not have f(a) ↪→ f(b) since a is frozen in f(a),
see [1, 6]. However, → is not confluent due to the non-joinable critical peak f(b)← f(a) ↪→ c.
(2) Neither assumption (i) nor assumption (ii) is necessary. That assumption (i) is not,
may be shown by adjoining c→ f(b) to T . That preserves confluence of ↪→, which may be
transferred to confluence of → using that the source of f(a) → f(b) is ↪→-reducible to its
target: f(a) ↪→ c ↪→ f(b), showing that the problematic critical peak is redundant, cf. [4].

To maximise the chance that the context-sensitive rewrite system ↪→ is terminating, i.e. to
maximise applicability of assumption (ii), it is best to minimise the number of active arguments
or, stated differently, to maximise the number of frozen arguments [1]. That is, letting µ map
each function symbol to the empty set ∅ would be best, but that may not be possible as
assumption (i) forces for every rule ℓ→ r that for every position p in ℓ such that ℓ|p unifies
with some left-hand side of a rule, p be active / not frozen. This motivates:

Definition 2 (convective). A replacement map µ is convective if µcnv ⊆ µ, i.e. if µ is not more
restrictive than µcnv , where µcnv is the most restrictive replacement map such that for every
rule ℓ→ r, for every position p in ℓ such that ℓ|p unifies with some left-hand side of a rule (i.e.
an overlap), i∈µcnv (ℓ(q)) for any qi ⪯ p (i.e. q is the position of a function symbol on the path
from the root to the overlap position p and i is its argument for which this holds.

Convectivity guarantees that if two left-hand sides occurring in a term have overlap the one
is active iff the other is, but nothing more. In particular, in a critical peak the inner redex
occurrence is active since the outer occurrence, at the root, is.

Example 3 (convective running example). Consider the CSR (suggested to us by Nao Hi-
rokawa) having rules and replacement map µcnv :

nats →1 from(0) tl(x : y) →4 y

inc(x : y) →2 s(x) : inc(y) from(x) →5 x : from(s(x))
hd(x : y) →3 x inc(tl(from(x))) →6 tl(inc(from(x)))

The only critical peak is between the fifth and sixth rules, for which convectivity entails we must
at least have 1 ∈ µ(inc), µ(tl). These two constraints give the convective replacement map µcnv .
For this CSR T , µ context-sensitive rewriting ↪→ trivially is terminating (checked by tools),
whereas ordinary term rewriting for T is non-terminating (still, confluence is checked by tools).

Remark 4. In the literature so-called canonical replacement maps, for which only the variables
may occur frozen in the left-hand sides of rewrite rules, play an important rôle. Formally, µ
is canonical if µcan ⊆ µ, i.e. if µ is not more restrictive than µcan , where µcan is defined
by i ∈ µcan(f) if for some position p and some rule ℓ→ r, we have ℓ(p) = f and ℓ(pi) is a
function symbol. Following-up on the preliminaries, the intuitive difference between canonical
and convective replacement maps is that a canonical replacement map requires all (non-variable)
positions in the redex-pattern to be active, whereas a convective replacement map requires this
only of the positions on an access path to where the redex-patern may be overlapped by another.

2Our overlining notation suggests that the overlined argument position is cut off from its context, i.e. frozen.
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Example 5. In Ex. 3 canonicity requires we also have 1∈µcan(hd) due to the (first) argument
belonging to the pattern of the left-hand side of the third rule, illustrating µcnv ⊂ µcan here.

The idea of our terminology convective is to view a term as a fluid, and the paths from the root
of a left-hand side to the roots of overlapping left-hand sides as representing flows within the
fluid, with the flow enabling activation of the latter. A term is in ↪→-normal form iff there’s
no flow from the root of the term to any redex-pattern. It then makes some intuitive sense to
speak of its layer at depth 0 as being solid. Formally, the depth of an occurrence is the number
of frozen argument positions it is in on the path to the root, inducing a natural stratification
of terms into layers of symbols, subterms, and redexes occurring at a given depth.

Lemma 6. If t→ s then t• ↠ s•,3 where • maps a term to its ↪→-normal form, unique by (ii).

Proof of Lem. 6. We claim t q−→ s entails4 t• ↠ ŝ←←↩ s for some ŝ. From the claim we conclude
using ŝ ↠ s• by assumption (ii) and ↪→ ⊆ →. We prove the claim by induction on t w.r.t. ←↩
well-founded (cf. [8, Def. A.1.5(vii)]) by assumption (ii), and by distinguishing cases on t q−→ s:

If t q−→ s decomposes as t ↪→ t′ q−→ s, we conclude by the IH for t′ q−→ s and t• = t′•.
Otherwise t q−→ s only contracts non-µ-redexes, occurring at depths at least 1 in t. By

assumption (i) those cannot have overlap with any redex-pattern at depth 0 in t, as that would
give rise to a critical peak of T that is not a critical peak of T , µ.

If t = t• we may trivially set ŝ := s. Otherwise, for some t′ there is a step t ↪→ t′ orthogonal
to t q−→ s, hence by the assumed left-linearity of T the steps commute. Because t ↪→ t′ is
not below (any redex-pattern in) t q−→ s, the residual of the former after the latter is again a
(single) ↪→-step, inducing a diagram of shape t ↪→ t′ q−→ s′ ←↩ s. By the IH for t′ q−→ s′ and
assumption (ii) we conclude to t• = t′• ↠ ŝ←←↩ s′ ←↩ s for some ŝ, as desired.

Assumption (ii) ensures ↪→ has the Z-property5 for bullet map • by [7, Lem. 11]. That bullet
map is extensive for ↪→, i.e. t ↪→→ t• [7, Definition 4]. We show → has the Z-property under
assumptions (i) and (ii) for some bullet map •⊚ based on •. To define •⊚ we use that any term
can be uniquely decomposed into its active layer at depth 0 w.r.t. µ (called maximal replacing
context MRCµ in [5]) and its frozen arguments at depth 1. Accordingly, we write C ⟨⃗t⟩ to denote
such a unique decomposition, where C is the active layer and t⃗ the vector of frozen arguments.

Definition 7. The layering •⊚ (of •) is inductively defined by C ⟨⃗t⟩•⊚ := C ⟨⃗t•⊚⟩•.

Lemma 8. C [⃗t•⊚] ↠ C [⃗t]•⊚.

Proof. By induction and cases on C. The base cases C = 2 and C = x being trivial, suppose C

has shape f(C⃗) and decompose t⃗ accordingly. We conclude to C [⃗t•⊚] = f(
−−−→
C [⃗t•⊚]) ↠ f(

−−−→
C [⃗t]•⊚) ↠

f(
−−→
C [⃗t])•⊚ = C [⃗t]•⊚ by, respectively, the decomposition of C [⃗t], the induction hypothesis for C⃗

and closure under contexts of→, the claim that g(s⃗•⊚) ↠ g(s⃗)•⊚ for all g and s⃗, and by definition
of the decomposition again.

To prove the claim, first observe that g(s⃗•⊚) ↠ g(s⃗•⊚)• by extensivity of • and ↪→ ⊆ →.
Therefore, to conclude it suffices to show g(s⃗•⊚)• = g(s⃗)•⊚. To that end, let g(s⃗) uniquely

decompose as g(
−−→
D[u⃗]) with for i∈µ(g), Di⟨u⃗i⟩ the unique decomposition of si, and for i ̸∈µ(g),

3We employ Klop’s convention, cf. [8], to use an arrow with a double arrowhead to denote the reflexive–
transitive closure of the rewrite relation denoted by the arrow with a single arrowhead.

4We employ Huet’s convention, cf. [8], to use an arrow adorned with two vertical strokes to denote parallel
reduction, allowing to perform steps with respect to the unadorned reduction at a number of parallel positions.

5A rewrite system ↪→ has the Z-property [7] for a map • on its objects, if a ↪→ b entails b ↪→→ a• ↪→→ b•.
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Di = 2 and u⃗i = si. Hence g(s⃗)•⊚ = g(
−−−→
D[u⃗•⊚])• per construction of the decomposition and by

definition of •⊚. To conclude to g(s⃗•⊚)• = g(s⃗)•⊚ = g(
−−−→
D[u⃗•⊚])• it then suffices to show that g(s⃗•⊚)

and g(
−−−→
D[u⃗•⊚]) are ↪→-convertible since ↪→ is complete by assumption (ii). Convertibility follows

from that for each active argument i ∈ µ(g) we have that si uniquely decomposes as Di⟨u⃗i⟩ so
that s•⊚i = Di⟨u⃗i •⊚⟩• hence s•⊚i and Di⟨u⃗i •⊚⟩ are ↪→-convertible and by i being active this extends

to the respective ith arguments of g(s⃗•⊚) and g(
−−−→
D[u⃗•⊚]), and from that for each frozen argument

i ̸∈ µ(g) we have by definition of Di and u⃗i that s
•⊚
i = Di[u⃗i

•⊚].

Theorem 9. → has the Z-property for •⊚.

Proof. We have to show that if ϕ : t → s is a TRS step, then there are reductions s ↠ t•⊚

and t•⊚ ↠ s•⊚, giving rise to the Z in [7, Figures 1 and 5]. This we prove by induction on the
decomposition C ⟨⃗t⟩ of the source t of ϕ and by cases on whether or not ϕ is a µ-step.

• if t ↪→ s, then by definition of •⊚ and extensivity of •⊚, there is a reduction t ↠ t•⊚ that
decomposes into a reduction γ :C ⟨⃗t⟩↠ C ⟨⃗t•⊚⟩ with steps at depth at least 1, followed by
a reduction δ : C ⟨⃗t•⊚⟩ ↪→→ C ⟨⃗t•⊚⟩• = t•⊚ with steps at depth 0. Since ϕ is a step at depth
0, assumption (i) yields it and its residuals (after any prefix of γ) are orthogonal to (the
corresponding suffix of) γ, giving rise by standard residual theory [8, Chapter 8] for the
left-linear TRS T , to a valley completing the peak between ϕ and γ that comprises a step
ϕ/γ : C ⟨⃗t•⊚⟩ ↪→ u and reduction γ/ϕ : s↠ u for some term u.

To conclude to s ↠ t•⊚ we compose γ/ϕ : s ↠ u with the ↪→-reduction (lifted to a →-
reduction using ↪→ ⊆ →) of its target u to ↪→-normal form, which is t•⊚ since t•⊚ =
C ⟨⃗t•⊚⟩• = u• by definition respectively ϕ/γ and completeness of ↪→.

To conclude to t•⊚ ↠ s•⊚, we claim that u has shape E[u⃗•⊚] and s has shape E[u⃗] for
some context E and vector of terms u⃗. Then, composing ϕ/γ : C ⟨⃗t•⊚⟩ ↪→ u with u =
E[u⃗•⊚] ↠ E[u⃗]•⊚ = s•⊚ obtained by Lem. 8, yields C ⟨⃗t•⊚⟩↠ s•⊚. From this we conclude to
t•⊚ = C ⟨⃗t•⊚⟩• ↠ (s•⊚)• = s•⊚ by Lem. 6 and idempotence of •.
It remains to prove the claim that u has shape E[u⃗•⊚] and s has shape E[u⃗] for some
context E and vector of terms u⃗. The idea is that both C and ℓ are preserved under
non-µ-steps, so their join is so too, and we set E be the result of contracting ℓ in the join.
Formally, we construct E as follows. Let ς := let X = C[x⃗] inX (⃗t) be the cluster [4]
corresponding to the occurrence of the context C in t, and let ζ be the cluster of shape
let Y = ℓ in . . . corresponding to the occurrence in t of the left-hand side ℓ of the rule
ℓ→r contracted in the step ϕ : t ↪→ s. Their join ξ := ς⊔ζ has shape let Z = D[z⃗] inZ(u⃗)
for some context D and terms u⃗, by ς being a root cluster of ς having overlap with ζ.

Per construction of ξ and by left-linearity of T there is a step ψ from D[z⃗] contracting
the occurrence of ℓ such that ϕ is a substitution instance of ψ.6 We define E from the
target of ψ writing it uniquely as E[w⃗] for w⃗ comprising the replicated variables of z⃗, so
that ψ :D[z⃗] ↪→ E[w⃗]. We define u⃗ from the target s of ϕ : t ↪→ s, noting s can be written
as the unique substitution instance E[w⃗]υ = E[u⃗] of the target E[w⃗] of ψ, for substitution
υ mapping zi to ui such that ϕ = ψυ. Per construction, t = D[z⃗]υ and s = E[w⃗]υ = E[u⃗].

Finally, we must show that u = E[u⃗•⊚]. To that end, note that any ↪→-step ϕ′ of shape
ψσ for term substitution σ, is orthogonal to any non-µ-step χ having the same source,

6D could be described as being obtained by unifying the occurrence of the left-hand side ℓ with the context
C (both linear and renamed apart). E is then the result of contracting the ℓ-redex in D. We avoided such an
account here since D and E are not simply contexts, but linear terms; the names of the holes in E do matter.
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as (the redex-pattern of) χ can neither have overlap with ς by χ being non-µ, nor have
overlap with ζ by assumption (i) using that ψ is at depth 0 and χ at depth at least 1,
so χ cannot have overlap with their join ς ⊔ ζ either. Thus, χ is of shape D[z⃗]τ for some
step-substitution7 τ , and χ/ϕ′ = E[w⃗]τ and ϕ′/χ = ψτ ′

with τ ′ the step-substitution such
that τ ′(zi) is the target of τ(zi), for all i.

By induction on the length of γ, we obtain from the above that the reduction γ : t =
C ⟨⃗t⟩↠ C ⟨⃗t•⊚⟩, comprises only steps that are substitution instances of D[z⃗] so that C ⟨⃗t•⊚⟩
is as well. In particular note that each reduction from ti to t•i does not change its top
part (if any) overlapping the occurrence of ℓ, so is the same as that top part where all its

arguments have been reduced to •⊚-normal form. That is, C ⟨⃗t•⊚⟩ has shape D[z⃗]υ
•⊚
. By

the above, u then has shape E[w⃗]υ
•⊚
= E[u⃗•⊚] as common target of ϕ/γ and γ/ϕ.

• if t → s is not a µ-step then s = C⟨s⃗⟩ with ti → si for some i and tj = sj for all j ̸= i.
Then the Z-property holds for s⃗, i.e. s⃗ ↠ t⃗•⊚ ↠ s⃗•⊚ since by the IH si ↠ t•⊚i ↠ s•⊚i , and
sj ↠ t•⊚j = s•⊚j for all j ̸= i by extensivity of •⊚. We conclude to s = C⟨s⃗⟩ ↠ C ⟨⃗t•⊚⟩ ↠
C ⟨⃗t•⊚⟩• = t•⊚ ↠ C⟨s⃗•⊚⟩• = s•⊚, using that the Z-property holds for s⃗ by the IH and closure
of → under contexts for the first reduction, extensivity of • and ↪→ ⊆ → for the second,
and Z for s⃗ and closure under contexts and preservation of ↠ by • for the third.

Corollary 10. Under assumptions (i) and (ii), → is confluent and the bullet strategy •⊚−→,
iterating the bullet map •⊚ on objects [7], is a hyper-cofinal strategy.8

By Thm. 9 and [7, Lem. 51 & Thm. 50]. Thus •⊚−→ is (hyper-)normalising [8], and the layered
bullet function •⊚ induces an effective (if ↪→ is) confluence construction and cofinal strategy.

A concrete criterion Our approach to confluence of a term rewrite system (via the Z-
property) has confluence of context-sensitive rewriting ↪→ as an assumption; in fact local con-
fluence suffices given termination is also assumed. The following is a known sufficient condition
for local confluence of context-sensitive rewriting ↪→; see e.g. [6] (also for other conditions).

(iii) T , µ is 0-preserving if, whenever a variable occurs at depth 0 in the left-hand side of a
rule, then all its occurrences in the right-hand side are at depth 0 as well.

Lemma 11 (Thm. 30 of [6]). If T , µ is a left-linear CSR satisfying assumptions (i) and (iii)
with ↪→-joinable critical peaks, then context-sensitive rewriting ↪→ is locally confluent.

Since convectivity entails assumption (i), and ↪→-joinability of critical peaks and 0-preservingness
entail confluence of ↪→ for left-linear CSRs by Lem. 11, combining this with termination of T
all assumptions of Thm. 9 are satisfied:

Corollary 12. If T , µ is a left-linear 0-preserving CSR such that µ is convective, critical peaks
are ↪→-joinable, and context-sensitive rewriting ↪→ is terminating, then the TRS T , i.e. the
rewrite system →, has the Z-property for the layered bullet function •⊚.

This generalises [1, Thm. 2], the main result of that paper, both by relaxing two of its assump-
tions, canonicity to convectivity and level-decreasingness to 0-preservingness, and by strength-
ening its conclusion from confluence to the Z-property.

7A substitution τ such that for all i, τ(zi) either is a single step or a term.
8A →-strategy is hyper-cofinal [8, 7] if for any a ↠ b, starting from a always eventually performing a •⊚−→-step

after a number of →-steps will yield an object c that exceeds b in the sense that b ↠ c.
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Example 13 (application to running example). The CSR of Ex. 3 is left-linear (by inspec-
tion of the left-hand sides; no repeated variables), 0-preserving (vacuously so, since there are
no variables at depth 0 in left-hand sides; all occur in overlined subterms), has a convective
replacement map (µcnv is the most restrictive such), and is terminating as was observed.

The (only) critical peak is between its fifth and sixth rules and is ↪→-joinable as shown
by (the following) two legs of its confluence diagram: inc(tl(from(x))) ↪→ tl(inc(from(x))) ↪→
tl(inc(x : from(s(x)))) ↪→ tl(s(x) : inc(from(s(x)))) ↪→ inc(from(s(x))) and inc(tl(from(x))) ↪→
inc(tl(x:from(s(x)))) ↪→ inc(from(s(x))).9 Corollary 12 yields→ has the Z-property, is confluent,
and •⊚−→ is an effective cofinal ↠-strategy.

Remark 14. The methods of [1] do not apply to yield the result of Ex. 13. Their methods
require level-decreasingness of the rules and the fifth added rule is not for the canonical re-
placement map µcan employed by them: the level of x in the lhs is then 1 whereas in the rhs it
occurs not only with level 1 but also with level 3. The only way to regain level-decreasingness
is to make both the second argument of : and the argument of s active, but that would violate
termination of ↪→ (the fifth rule becomes spiralling), one of the other assumptions of [1, Thm. 2].

Conclusion Based on a notion of convectivity introduced here, and by relaxing the as-
sumptions of [1, Thm. 2], we partially settled [1, Open Problem 1] by Cor. 12. In the long
note http://www.javakade.nl/research/pdf/z-csr.pdf we also positively settled [1, Open
Problem 2]. Though that note provides several examples other than Ex. 13 illustrating our
method, implementing it on top of an extant tool would open up the database of confluence
problems for easy experimentation. See [2] for more on that w.r.t. the tool CONFident.
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