
Ground Canonical Rewrite Systems Revisited

Aart Middeldorp1, Masahiko Sakai2, and Sarah Winkler3

1 University of Innsbruck, Innsbruck, Austria, aart.middeldorp@uibk.ac.at
2 Nagoya University, Nagoya, Japan, sakai@i.nagoya-u.ac.jp

3 Free University of Bozen-Bolzano, Bolzano, Italy, winkler@inf.unibz.it

Abstract

Systems of ground equations can always be transformed into equivalent canonical
rewrite systems. Moreover, only finitely many distinct canonical rewrite systems exist
for a given system of ground equations, a result proved by Snyder using congruence clo-
sure. Snyder also introduced a simple transformation to convert one canonical presentation
into another one. In this paper we prove that this transformation is sound and complete,
using standard rewrite techniques. We show that the transformation fails in the AC case.

1 Introduction

Congruence closure is an efficient technique to solve the word problem for systems of ground
equations. Completion is a well-known technique for transforming systems of equations into
equivalent canonical rewrite systems. It takes a reduction order as input and if it succeeds, the
word problem is decidable by computing and comparing the unique normal forms of the two
terms involved. For systems of ground equations, completion can be tamed such that it always
terminates. Snyder [5] proved that the number of distinct canonical rewrite systems representing
a given set of ground equations is at most 2k where k is the number of equations. Furthermore,
each of these canonical rewrite systems has the same number of rewrite rules. Finally, given
one canonical rewrite system, all others can be obtained by a simple transformation.

This transformation is the topic of the paper. Using traditional rewrite techniques, which
we briefly recall in Section 2, we prove in Section 3 that the transformation preserves canonicity
and that it is complete in the sense that all canonical presentations of a given system of ground
equations can be obtained from any of them by a finite number of transformation steps. In
Section 4 we consider the extension of Snyder’s transformation in the presence of associative
and commutative operators. We conclude with some open questions.

2 Preliminaries

We assume familiarity with term rewriting but recall some important concepts and results in
this preliminary section. An equational system (ES for short) is a set of equations between
terms over a common signature. Throughout this paper we will consider finite ground TRSs.
Every ground ES is also a TRS, and vice versa. A TRS is right-reduced if the right-hand sides
of its rewrite rules are normal forms. It is left-reduced if every left-hand side of a rewrite rule
is a normal form with respect to the other rules. A reduced TRS is both left-reduced and
right-reduced. A TRS that is confluent, terminating and reduced is called canonical. Given
a TRS R, we denote the set of left-hand (right-hand) sides of its rules by LHS(R) (RHS(R)).
The set of its normal forms is denoted by NF(R).

Two TRSs R and S are (conversion) equivalent if ↔∗
R =↔∗

S and normalization equivalent
if →!

R = →!
S . Here t →!

R u if both t →∗
R u and u ∈ NF(R). A simple sufficient condition

for normalization equivalence of canonical TRSs is stated in the following lemma, which is a
special case of [1, Lemma 4.4(2)].
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Lemma 1. If R and S are canonical TRSs such that NF(S) ⊆ NF(R) and →S ⊆ ↔∗
R then R

and S are normalization equivalent.

We conclude this preliminary section with two basic results that will be used in the sequel.
We refer to [1] for modern (formalized) proofs of these results. The first one is a variation of a
result by Métivier [3] and the second one is due to Snyder [5, Theorem 2.14].

Theorem 2.

1. Normalization equivalent reduced TRSs are unique up to literal similarity.

2. Reduced ground TRSs are canonical.

For ground TRSs, literal similarity amounts to equality, so normalization equivalent reduced
ground TRSs are unique and equivalent canonical ground TRSs compatible with the same
reduction order are identical.

3 Snyder’s Transformation

Snyder [5, Theorem 3.18] showed how any set of ground equations E can be transformed into a
special structure-sharing dag G from which an abstract relation T is extracted which represents
a canonical ground TRS R equivalent to E . The procedure runs in O(n log n) time, where n
is the size of E , though it may require more than O(n log n) time to actually obtain the TRS
R from the dag. The method is complete in the sense that any canonical ground TRS R
equivalent to E can be obtained in this way [5, Theorem 4.6]. This completeness result relies
on the existence of a compatible well-founded order with the subterm property that is total on
ground terms [5]. Furthermore, if E consists of k equations then there are at most 2k equivalent
canonical ground TRSs [5, Theorem 4.7]. This final result relies on the fact that any equivalent
canonical TRS has at most k rewrite rules (which follows from ground completion, as remarked
in [5, p. 424]).

Snyder mentions at the end of Section 4 that a single transformation is sufficient to generate
all other equivalent canonical ground TRS from any given canonical TRS. This transformation
is defined as follows:

R⊎ {ℓ→ r} =⇒ R′ ∪ {r → ℓ} (⋆)

Here R⊎ {ℓ→ r} is a canonical ground TRS such that r is not a proper subterm of ℓ, and R′

is the ground TRS obtained from R by replacing every occurrence of r in the rewrite rules by
ℓ. No proofs are provided, cf. [5, footnote 15].

Example 3. The collection of ground equations

f(a) ≈ g(b, b) f(f(a)) ≈ a f(f(f(a))) ≈ a

g(b, h(a)) ≈ g(b, b) h(a) ≈ b i(f(a)) ≈ c

admits six different canonical TRSs, which are connected by (⋆) as depicted in Figure 1, where
the labels of arrows indicate the rule that was flipped.

Below we present detailed proofs concerning the transformation (⋆). We write t{r 7→ ℓ} for
the term obtained from t after replacing all subterms r by ℓ. The canonicity of R′ ∪ {r → ℓ}
is relatively easy to prove.
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1. f(g(b, b)) → g(b, b)
2. a → g(b, b)
3. h(g(b, b)) → b
4. i(g(b, b)) → c

2⇐⇒

1. f(a) → a
2. g(b, b) → a
3. h(a) → b
4. i(a) → c

3⇐⇒

1. f(a) → a
2. g(h(a), h(a)) → a
3. b → h(a)
4. i(a) → c~w�4

~w�4

~w�4

1. f(g(b, b)) → g(b, b)
2. a → g(b, b)
3. h(g(b, b)) → b
4. c → i(g(b, b))

2⇐⇒

1. f(a) → a
2. g(b, b) → a
3. h(a) → b
4. c → i(a)

3⇐⇒

1. f(a) → a
2. g(h(a), h(a)) → a
3. b → h(a)
4. c → i(a)

Figure 1: Six equivalent canononical TRSs.

Lemma 4. The TRS R′ ∪ {r → ℓ} is canonical.

Proof. We first show that R′ ∪ {r → ℓ} is right-reduced. Suppose to the contrary that a right-
hand side t of a rule in R′ ∪ {r → ℓ} is reducible with a rule u→ v ∈ R′ ∪ {r → ℓ}. Since we
deal with ground TRSs, t ⊵ u. Since right-hand sides of rules in R′ ∪ {r → ℓ} do not contain
occurrences of r, u → v ∈ R′. Let u′ → v′ be the rule in R such that u = u′{r 7→ ℓ} and
v = v′{r 7→ ℓ}. Similarly, let t′ be the right-hand side of a rule in R such that t = t′{r 7→ ℓ}.
From t ⊵ u we infer t′ ⊵ u′, contradicting the fact that R ∪ {ℓ→ r} is right-reduced. Next
we show that R′ ∪ {r → ℓ} is left-reduced. Let t be the left-hand side of a rewrite rule in
R′ ∪ {r → ℓ}. We distinguish two cases.

� Suppose t = r /∈ NF(R′). So r ⊵ v for some left-hand side v of a rewrite rule in R′. Since ℓ
is not a proper subterm of r by assumption and ℓ = r is excluded by the right-reducedness
of R ∪ {ℓ→ r}, v contains no occurrences of ℓ. It follows that v is the left-hand side of
a rewrite rule in R, contradicting the right-reducedness of R∪ {ℓ→ r}.

� Suppose t → u ∈ R′ with t /∈ NF((R′ ∪ {r → ℓ}) \ {t→ u}). Since t does not contain
any occurrences of r, we have t /∈ NF(R′ \ {t→ u}). Let v → w be a rewrite rule in
R′ \ {t→ u} such that t ⊵ v. Let t′ and v′ be the left-hand sides of rules in R such that
t = t′{r 7→ ℓ} and v = v′{r 7→ ℓ}. We have t′ ⊵ v′, contradicting left-reducedness of R.

The proof is concluded by the canonicity of reduced ground TRSs, cf. Theorem 2 (2).

We next show that every canonical presentation S of an ES E can be obtained from another
canonical presentation R by a sequence of (⋆) transformations.

Theorem 5. Transformation (⋆) is complete.

Proof. Let E be an ES and R a canonical presentation of E . For an arbitrary canonical repre-
sentation S of E , we prove by induction on |RHS(S) \ NF(R)| that R can be transformed into
S by a sequence of (⋆) transformations. First, note the following:

NF(R) ∩ LHS(S) = ∅ =⇒ R = S (†)
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This can be shown as follows. From the assumption we obtain NF(R) ⊆ NF(S) as NF(R) is
closed under subterms. Conversion equivalence implies→R ⊆ ↔∗

S and R is terminating. Hence
R and S are normalization equivalent by Lemma 1 and equal by Theorem 2 (1).

In the base case RHS(S) ⊆ NF(R). By (†), if S ≠ R, there is some u → v ∈ S such
that u ∈ NF(R). However, RHS(S) ⊆ NF(R) implies v ∈ NF(R), which contradicts conversion
equivalence as u and v are different convertible normal forms in R.

In the induction step, we can assume by (†) that S contains a rule u → v such that
u ∈ NF(R). Conversion equivalence and completeness of R imply v →+

R u. In particular, v is
not a proper subterm of u and hence we can apply transformation (⋆) to u→ v in S. Let S ′ be
the resulting TRS, which is canonical and contains v → u. We compare RHS(S) \ NF(R) and
RHS(S ′) \ NF(R). The former contains v as u → v ∈ S and v /∈ NF(R). This rule is replaced
by v → u in S ′, which does not contribute to RHS(S ′) \ NF(R) as u ∈ NF(R). In addition,
(⋆) may replace right-hand sides r[v] ∈ RHS(S) by r[u] ∈ RHS(S ′), but for all such terms r[v],
we have r[v] ∈ RHS(S) \ NF(R). Independent of whether or not r[u] ∈ RHS(S ′) \ NF(R) for
some of the modified right-hand sides, we have |RHS(S) \NF(R)| > |RHS(S ′) \NF(R)|. By the
induction hypothesis a sequence of (⋆) transformations can turn S ′ into R.

4 Ground AC-Canonical Rewrite Systems

Marché [2, Theorem 3.1] proved that any AC canonical ground TRS for a finite set of ground
equations with AC operators must be finite. The interesting proof relies on Dickson’s Lemma.
In the same paper, Marché presents a version of ground completion for the AC setting and
a strategy that ensures termination [2, Theorem 4.3]. Unlike ground completion, in the AC
setting critical pairs involving rules with the same AC symbol at the root of left-hand side
need to be deduced. Unlike for AC completion, AC unification is not needed for computing
these critical pairs. Ground AC completion relies on an AC simplification order which is AC
total on ground terms. The existence of such an order was first shown by Narendran and
Rusinowitch [4].

The next example shows that the transformation (⋆) is unsuitable in an AC setting.

Example 6. The ground equations

f(a, b) ≈ d f(b, c) ≈ e

with AC symbol f admit five different AC canonical TRSs:

A f(a, b)
1−→ d f(b, c)

2−→ e f(a, e)
3−→ f(c, d)

B f(a, b)
1−→ d f(b, c)

2−→ e f(a, e)
3←− f(c, d)

C f(a, b)
1−→ d f(b, c)

2←− e

D f(a, b)
1←− d f(b, c)

2−→ e

E f(a, b)
1←− d f(b, c)

2←− e

If we apply (⋆) to A by reversing rule 1 then rule 3 is first modified to f(a, e) ≈ f(a, b, c) and
subsequently deleted due to rule 2, resulting in D. (This cannot happen in the non-AC case.)
Applying the AC version of (⋆) systematically yields the following diagram:

4
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A C

D B E

3

2

1 2

1

1

2

Selecting rule 1 in D or rule 2 in C results in the TRS

F f(a, b)
1−→ d f(b, c)

2−→ e

which is not AC confluent. From F we obtain A and B by orienting the single AC critical pair.

The underlying problem is that reduced ground TRSs need not be AC confluent, necessitat-
ing the computation of AC critical pairs. In general, however, after applying (⋆) and resolving
AC critical pairs, new critical pairs may arise. Worse, reversing a rule might violate termination.

Example 7. The TRS R consisting of the two rules

f(b, c)→ f(a, b) f(c, d)→ f(d, a)

with AC symbol f is AC canonical. Reversing the first rule results in the TRS R′:

f(a, b)→ f(b, c) f(c, d)→ f(d, a)

Transformation (⋆) requires no further changes. However, AC termination is violated:

f(a, b, d)→R′/AC f(b, c, d)→R′/AC f(a, b, d)

Despite the fact that the first AC completion procedures have been presented thirty years
ago, many questions about even the simpler setting of ground AC completion are still open,
for instance: Is the number of AC canonical presentations of an ES finite? If yes, how many
such presentations are there? Can every equivalent AC canonical ground TRS be generated by
modifying the AC termination order?
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