
A verified algorithm for deciding pattern completeness and

related properties∗

René Thiemann

Universität Innsbruck, Austria
rene.thiemann@uibk.ac.at

Abstract

Pattern completeness is the property that the left-hand sides of a functional program
cover all cases w.r.t. pattern matching. In the context of term rewriting a related notion
is quasi-reducibility, a prerequisite if one wants to perform ground confluence proofs by
rewriting induction.

In order to certify such confluence proofs, we develop an algorithm that decides pattern
completeness and that can be used to ensure quasi-reducibility. One of the advantages of
the algorithm is its simple structure: it is similar to that of a regular matching algorithm,
and it avoids the enumeration of all terms up to a given depth (the latter is required in
an existing decision procedure for quasi-reducibility.) Despite having a simple structure,
termination and soundness proofs for the algorithm are not immediate. However, these
properties have been verified in Isabelle/HOL.

1 Introduction

Consider programs written in a declarative style such as functional programs or term rewrite
systems, where evaluation is defined by pattern matching. In several applications it is important
to know that evaluation of a given program cannot get stuck, i.e., the programs should be
sufficiently complete. For instance in Isabelle/HOL [7], a function definition must be sufficiently
complete since HOL is a logic of total functions. And methods that are based on rewriting
induction [1, 8] require similar completeness results, e.g., for proving ground confluence.

In both applications the evaluation mechanism can be described as a set of rules ℓ → r
where evaluation replaces instances of left-hand sides (lhss) ℓσ by instances of right-hand sides
rσ. Let L be the set of lhss of some set of rules. We consider programs where lhss are first-
order terms over some finite signature F = C ⊎ D where C are constructor symbols and D
are defined symbols. Hence, input values to a function are represented by constructor ground
terms, denoted by T (C). We further assume a typed setting where we consider first-order
monomorphic types, i.e, every function symbol of arity n has a type τ1 × · · · × τn → τ0, where
each type τi is just a name and τ0 is called the target type. Also variables are typed and we
write Vτ for the set of variables of type τ . We define T (C)τ as the set of constructor ground
terms that have type τ , and we assume T (C)τ ̸= ∅ for all types τ .

We can now define a first notion to describe that a program cannot get stuck.

Definition 1 (Pattern Completeness of Programs). A program with lhss L is pattern complete,
if for all terms f(t1, . . . , tn), with f : τ1 × · · · × τn → τ0 ∈ D and (t1, . . . , tn) ∈ T (C)τ1 × · · · ×
T (C)τn , there is some ℓ ∈ L such that t = f(t1, . . . , tn) is matched by ℓ.

∗This research was supported by the Austrian Science Fund (FWF) project I 5943.

A verified algorithm for deciding pattern completeness and related properties René Thiemann

Example 2. Let CN = {true : B, false : B, 0 : N, s : N → N} be the set of constructors to
represent the Booleans and natural numbers in Peano notation. We consider a program RN
that defines a function to compute whether a natural number is even, i.e., D = {even : N → B}.

even(0) → true even(s(0)) → false even(s(s(x))) → even(x) (1)

This program is pattern complete, since no matter which number n we provide as argument,
one of the lhss will match the term even(n); this fact can easily be seen by a case-analysis on
whether n represents 0, 1, or some larger number.

Note the importance of types: without them even(s(true)) would contradict completeness.

An alternative notion to pattern completeness is quasi-reducibility [5] where the difference
is that the matching can happen for an arbitrary subterm.

Definition 3 (Quasi-Reducibility of Programs). A program with lhss L is quasi-reducible, if
all terms f(t1, . . . , tn), with f : τ1×· · ·× τn → τ0 ∈ D and (t1, . . . , tn) ∈ T (C)τ1 ×· · ·×T (C)τn ,
there is some ℓ ∈ L such that a subterm of t = f(t1, . . . , tn) is matched by ℓ.

Clearly, pattern completeness implies quasi-reducibility, and if the root symbols of all lhss
in a program are within D, then the two notions coincide. The following example illustrates
the difference between the two notions.

Example 4. Consider CZ = {true : B, false : B, 0 : Z, s : Z → Z, p : Z → Z} to represent the
Booleans and integers in Peano notation, e.g., p(0) represents -1. Now we consider a program
RZ that defines a function to compute whether an integer number is even, i.e., D = {even :
Z → B}. It consists of all rules of RN and the following additional rules.

even(p(0)) → false even(p(p(x))) → even(x) (2)

s(p(x)) → x p(s(x)) → x (3)

This program is quasi-reducible since every term even(n) with n ∈ T (CZ)Z has a subterm
that is matched by some lhs: If n contains both s and p then one of the rules (3) is applicable.
Otherwise n is of the form si(0) or pi(0) and then rules (1) or (2) will be applicable.

But the program is not pattern complete since even(s(p(0))) is not matched by any lhs.

Kapur et al. proved decidability of quasi-reducibility [5]. They show that one may replace
the quantification over all constructor ground terms t1, . . . , tn in Definition 3 by a bounded
quantification where the depth of the terms ti is restricted by d, a number that can computed
from L; overall their decision procedure requires to enumerate exponentially many terms when-
ever C contains a symbol of arity 2 or larger. We are aware of two other algorithms to deduce
quasi-reducibility in more complex settings, e.g., where rules may be constrained by arithmetic
constraints such as “this rule is only applicable if x > 0” [4, 6], but both algorithms do not
properly generalize the result of Kapur et al. since they are restricted to linear lhss. Bouhoula
and Jacquemard [3] also designed an algorithm in a more complex setting with conditions and
constraints, and a back-end that is based on constrained tree automata techniques. Since their
soundness result is restricted to ground confluent systems, their algorithm is not applicable
in our use-case, since we want to verify ground confluence proofs on methods that rely upon
quasi-reducibility. Finally, Bouhoula developed an algorithm to verify ground confluence and
sufficient completeness at the same time [2], where we are not sure whether it can also be used
to just ensure completeness, e.g., for non-ground confluent systems.

In this paper we will provide a simple algorithm to decide pattern completeness. It avoids
to always enumerate all terms up to given depth, it is not restricted to linear lhss, and it does

2

A verified algorithm for deciding pattern completeness and related properties René Thiemann

not require tree automata algorithms. It can also be used as a sufficient criterion for quasi-
reducibility, and as a decision procedure for those programs where all lhss have a defined symbol
as root.

2 Pattern Completeness – The Linear Case

Before we design the new decision procedure for pattern completeness we first reformulate and
generalize this notion. A slightly more general notion than pattern completeness is already
provided by Aoto and Toyama [1]. They define the concept of a cover, where L covers a term
t if for all σcg there is some ℓ ∈ L that matches tσcg (here, σcg represents some arbitrary
constructor ground substitution where all variables are replaced by constructor ground terms).
Hence, pattern completeness can be formulated as the question whether f(x1, . . . , xn) is covered
by L for all defined symbols f where the xi’s are distinct variables.

We generalize the notion of a cover further into a pattern problem.

Definition 5 (Matching Problem and Pattern Problem). A matching problem is a finite set
mp = {(t1, ℓ1), . . . , (tn, ℓn)} that contains arbitrary pairs of terms. A pattern problem is a finite
set pp = {mp1, . . . ,mpk} of matching problems.

A matching problem mp is solvable w.r.t. some constructor ground substitution σcg if there
is some substitution γ such that tiσcg = ℓiγ for all (ti, ℓi) ∈ mp. A pattern problem pp is
solvable if for each constructor ground substitution σcg there is some mp ∈ pp such that mp is
solvable w.r.t. σcg. A set of pattern problems P is solvable if each pp ∈ P is solvable.

We further introduce a special matching problem ⊥mp that represents an unsolvable matching
problem. Similarly, we define ⊤pp as a new pattern problem that is always solvable. Finally,
⊥P represents a new unsolvable set of pattern problems.

Hence, the question of whether L covers t can be encoded in the pattern problem {{(t, ℓ)} |
ℓ ∈ L}. Similarly, Aoto and Toyama’s notion of strong quasi-reducibility [1] can also be encoded
as a pattern problem:

⋃
t∈{x1,...,xn,f(x1,...,xn)}{{(t, ℓ)} | ℓ ∈ L} expresses that one tries to find

a match at the root (t = f(x1, . . . , xn)) or a match for a direct subterm (t = xi). Finally, the
question of whether a program with lhss L and defined symbols D is pattern complete w.r.t.
Definition 1 is expressible as solvability of the set of pattern problems {{{(f(x1, . . . , xnf

), ℓ)} |
ℓ ∈ L} | f ∈ D} where nf is the arity of f and the variables x1, . . . , xnf

are distinct.

The following inference rules describe a decision procedure to determine solvability of linear
pattern problems. A matching problem {(t1, ℓ1), . . . , (tn, ℓn)} is linear if each ℓi is linear and
the variables of ℓi and ℓj are disjoint for i ̸= j. A pattern problem is linear if all its matching
problems are linear.

Definition 6 (Inference Rules for Linear Pattern Problems). We define → as a set of simpli-
fication rules for matching problems.

{(f(t1, . . . , tn), f(ℓ1, . . . , ℓn)} ⊎mp → {(t1, ℓ1), . . . , (tn, ℓn)} ∪mp (decompose)

{(f(. . .), g(. . .)} ⊎mp → ⊥mp if f ̸= g (clash)

{(t, x)} ⊎mp → mp (match)

On top of this we define simplification rules ⇒ for pattern problems.

{mp} ⊎ pp ⇒ {mp′} ∪ pp if mp → mp′ (simp-mp)

{⊥mp} ⊎ pp ⇒ pp (remove-mp)

{∅} ⊎ pp ⇒ ⊤pp (success)

3

A verified algorithm for deciding pattern completeness and related properties René Thiemann

Finally we provide rules ⇛ for modifying sets of pattern problems.

{pp} ⊎ P ⇛ {pp′} ∪ P if pp ⇒ pp′ (simp-pp)

{∅} ⊎ P ⇛ ⊥P (failure)

{⊤pp} ⊎ P ⇛ P (remove-pp)

{pp} ⊎ P ⇛ {ppσx,c | c ∈ Cτ} ∪ P if mp ∈ pp, (x, f(. . .)) ∈ mp, and x ∈ Vτ (instantiate)

Here, Cτ is the set of constructors with target type τ and σx,c is a substitution which just replaces
x by c(x1, . . . , xn) where n is the arity of c and x1, . . . , xn are fresh and distinct variables. The
pattern problem ppσx,c is obtained from pp by changing every pair (t, ℓ) in every matching
problem of pp to (tσx,c, ℓ).

Clearly, (decompose) and (clash) correspond to a standard matching algorithm. Similarly,
(match) is standard for matching with linear lhss, but will cause problems in the non-linear case.
Nearly all of the other rules mainly correspond to the universal and existential quantification
that is done in the definition of solvability. The only exception is (instantiate). Here a matching
algorithm would detect a failure since a variable x is never matched by a non-variable term
f(. . .). However, since the x in our setting just represents an arbitrary constructor ground
term, we need to make a case analysis on the outermost constructor. This is done by replacing
x ∈ Vτ by all possible constructor ground terms of shape c(x1, . . . , xn) for all c ∈ Cτ .

The following theorem states that ⇛ can be used to decide linear pattern problems. Here,
⇛! is defined as reduction to normal form, i.e., P ⇛! P ′ iff P ⇛∗ P ′ ∧ ¬∃P ′′. P ′ ⇛ P ′′.

Theorem 7 (Decision Procedure for Solvability of Linear Pattern Problems).

• ⇛ is terminating.

• Whenever P ⇛! P ′ then P ′ ∈ {∅,⊥P }.

• Whenever P is linear and P ⇛ P ′ then P ′ is linear, and P is solvable iff P ′ is solvable.

• Whenever P is linear then P is solvable iff P ⇛! ∅.

So, solvability of linear pattern problems is decidable. Regarding the complexity, one can
prove an exponential upper bound on the number of ⇛-steps. However, there might be room
for improvement: for all examples we considered so far, there also is a strategy such that only
polynomially many ⇛-steps are required, e.g., by changing the order of variables on which
(instantiate) is applied.

Example 8. The algorithm validates that RN in Example 2 is pattern complete. In the execu-
tion of the algorithm we interpret sets as multisets.

P = { {{(even(y), even(0))}, {(even(y), even(s(0)))}, {(even(y), even(s(s(x))))}} }
⇛3 { {{(y, 0)}, {(y, s(0))}, {(y, s(s(x)))}} }
⇛ { {{(0, 0)}, {(0, s(0))}, {(0, s(s(x)))}}, {{(s(z), 0)}, {(s(z), s(0))}, {(s(z), s(s(x)))}} }
⇛6 { {∅,⊥mp,⊥mp}, {⊥mp, {(z, 0)}, {(z, s(x))}} }
⇛3 { {{(z, 0)}, {(z, s(x))}} }
⇛ { {{(0, 0)}, {(0, s(x))}}, {{(s(y), 0)}, {(s(y), s(x))}} }
⇛5 { {∅,⊥mp}, {⊥mp, ∅} }
⇛4 ∅

4

A verified algorithm for deciding pattern completeness and related properties René Thiemann

3 Pattern Completeness – The General Case

For achieving soundness for the non-linear case we have to modify the (match) rule.

Definition 9 (Match Rule for the General Case).

{(t, x)} ⊎mp → mp if for all (t′, ℓ) ∈ mp, x does not occur ℓ (match’)

In the linear case the additional occurrence check in rule (match’) is always satisfied, so
we can still simulate the algorithm for the linear case with this modified rule. Soundness and
termination of ⇛ still are satisfied, even for non-linear inputs.

However, after the switch from rule (match) to (match’) it can happen that ⇛ gets stuck,
e.g., if there is a matching problem {(t, x), (t′, x)} for t ̸= t′. To treat these cases we have to add
further simplification rules. In order to do so, we need to distinguish between finite and infinite
types τ , i.e., whether the set T (C)τ is finite or infinite. To illustrate the problem, consider a
program with three left-hand sides: f(x, x, y), f(x, y, x), and f(y, x, x). If x is a variable of
a finite type that just allows two different values, such as the Booleans, then these left-hand
sides cover all cases. If the type has infinitely many values, such as lists, then the left-hand
sides do not suffice, indicating an unsolvable problem. So, we must be able to instantiate in
the finite-type case. However, we cannot allow an instantiation in the infinite-type case, since
otherwise the resulting inference rules would no longer be terminating.

As final preparation for the new inference rules we define (the only two) reasons on why two
terms differ. We say that terms t ̸= t′ clash if t|p = f(. . .) ̸= g(. . .) = t′|p with f ̸= g for some
shared position p of t and t′. The terms t ̸= t′ differ in variable y if t|p ̸= t′|p and y ∈ {t|p, t′|p}
for some shared position p.

Definition 10 (Inference Rules for General Pattern Problems). We take all rules of the linear
algorithm with the following modifications.

• Rule (match) is replaced by (match’).

• We add the following three rules to avoid to get stuck.

{(t, x), (t′, x)} ⊎mp → ⊥mp if t and t′ clash (clash’)

{pp} ⊎ P ⇛ {ppσx,c | c ∈ Cτ} ∪ P (instantiate’)

if mp ∈ pp, {(t, y), (t′, y)} ⊆ mp, t and t′ differ in variable x ∈ Vτ , and τ is finite

{pp} ⊎ P ⇛ ⊥P if for each mp ∈ pp there are {(t, y), (t′, y)} ⊆ mp (failure’)

such that t and t′ differ in variable x ∈ Vτ and τ is infinite

Indeed, with these modifications, ⇛ cannot get stuck even for non-linear inputs.
We first remark that there is a different flavour of problems with non-linear matching prob-

lems of the form {(t, x), (t′, x)}. Clashing of t and t′ can always be resolved locally. If there
is a difference of a finite-type variable, this can also be handled immediately by (instantiate’).
However, differences of infinite-type variables can only be applied via (failure’) if indeed all
matching problems show such a difference. Note that it is unsound to turn (failure’) into a
local rule for matching problems, i.e., if we would make (failure’) similar to (clash’).

Overall, we arrive at a similar theorem to the linear case, though its proof is much more
evolved. It has been proven in Isabelle (2700 lines), based on IsaFoR1 and on a library on sorted
terms by Akihisa Yamada.

1http://cl-informatik.uibk.ac.at/isafor/

5

http://cl-informatik.uibk.ac.at/isafor/

A verified algorithm for deciding pattern completeness and related properties René Thiemann

Theorem 11 (Decision Procedure for Solvability of Pattern Problems).

• ⇛ is terminating.

• Whenever P ⇛! P ′ then P ′ ∈ {∅,⊥P }.

• Whenever P ⇛ P ′ then P is solvable iff P ′ is solvable.

• P is solvable iff P ⇛! ∅.

The formalization in Isabelle also contains a verified list-based implementation of the ab-
stract inference rules. It fixes a strategy where first ⇒-steps are applied exhaustively. Rules
(instantiate) and in particular (instantiate’) get applied as late as possible. However, this im-
plementation is not fully working, as it expects a function to compute whether a given type τ
is infinite or not, and we did not yet verify a suitable algorithm for this subtask.

Note that it is possible to extend ⇛ in a way that it provides a witness constructor ground
substitution in case a pattern problem is not solvable. To this end one has to store the sub-
stitutions that have been applied via the two rules for instantiation; and in case rule (failure’)
has been used, a final constructor-ground substitution can be generated by following the con-
struction in the soundness proof of that rule.

It remains open whether a similar syntax directed decision procedure for quasi-reducibility
can be designed, i.e., without an explicit enumeration of terms.

Acknowledgements We thank the anonymous reviewers for their helpful remarks and for
their references to related work.

References

[1] Takahito Aoto and Yoshihito Toyama. Ground confluence prover based on rewriting induction. In
Proc. FSCD 2016, volume 52 of LIPIcs, pages 33:1–33:12, 2016.

[2] Adel Bouhoula. Simultaneous checking of completeness and ground confluence for algebraic speci-
fications. ACM Trans. Comput. Log., 10(3):20:1–20:33, 2009.

[3] Adel Bouhoula and Florent Jacquemard. Sufficient completeness verification for conditional and
constrained TRS. J. Appl. Log., 10(1):127–143, 2012.

[4] Stephan Falke and Deepak Kapur. Rewriting induction + linear arithmetic = decision procedure.
In Proc. IJCAR 2012, volume 7364 of LNCS, pages 241–255, 2012.

[5] Deepak Kapur, Paliath Narendran, and Hantao Zhang. On sufficient-completeness and related
properties of term rewriting systems. Acta Informatica, 24(4):395–415, 1987.

[6] Cynthia Kop. Quasi-reductivity of logically constrained term rewriting systems. CoRR,
abs/1702.02397, 2017.

[7] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[8] Uday S. Reddy. Term rewriting induction. In Proc. CADE 1990, volume 449 of LNCS, pages
162–177, 1990.

6

	Introduction
	Pattern Completeness – The Linear Case
	Pattern Completeness – The General Case

